Міністерство освіти та науки України

Національний університет водного господарства та природокористування

Навчально-науковий механічний інститут

Кафедра будівельних, дорожніх, меліоративних, сільськогосподарських машин і обладнання

ЗАТВЕРДЖУЮ

Проректор з науково-педагогічної, методичної та виховної роботи

________________ О.А. Лагоднюк

“___” ___________ 2018 р.

02-01-39

РОБОЧА ПРОГРАМА НАВЧАЛЬНОЇ ДИСЦИПЛІНИ

Program of the Discipline

Наукові основи створення машин для прокладання підземних комунікацій

Machines are for the gasket of underground communications

спеціальність

specialty

133 Галузеве машинобудування

133 Engineering Sector

спеціалізація

specialization

Підйомно-транспортні, дорожні, будівельні, меліоративні машини і обладнання

Lifting, Road Construction and Reclamation Machines and Equipment (Mining)

(назва спеціалізації)

(название специализации)

Рівне – 2018 рік
Робоча програма навчальної дисципліни Наукові основи створення машин для
прокладання підземних комунікацій для студентів денної та заочної форм на-
вчання спеціальності 133 – "Галузеве машинобудування", галузь знань – 13 "Ме-
ханічна інженерія". Ступінь підготовки – Магістр. Професійна спеціалізація –
"Підйомно-транспортні, дорожні, будівельні, меліоративні машини і обладнання"

Розробник: докт.техн.наук, професор кафедри, будівельних, дорожніх, меліора-
тивних, сільськогосподарських машин і обладнання С.В.Кравець

Робочу програму схвалено на засіданні кафедри будівельних, дорожніх, меліора-
тивних, сільськогосподарських машин і обладнання
Протокол № 1 від 3 вересня 2018 року.

Завідувач кафедри
д.т.н., професор

Кравець С.В.

Схвалено науково-методичною комісією за спеціальністю
133 «Галузеве машинобудування»
Протокол № 1 від 11 вересня 2018 р.

Голова науково-методичної
комісії, д.т.н.,проф.

С.В. Кравець

© С.В. Кравець, 2018
© НУВГП, 2018
Вступ

Робоча програма обов’язкової навчальної дисципліни "Наукові основи створення машин для прокладання підземних комунікацій" складена відповідно до освітньо-професійної програми підготовки магістра спеціальності 133 "Галузеве машинобудування".

Предметом вивчення навчальної дисципліни є формування теоретичних знань та практичних навичок по створенню нових об’єктів машинобудівної галузі на прикладі машин і обладнання для прокладання підземних комунікацій.

Міждисциплінарні зв’язки – дисципліна "Теорія руйнування робочих середовищ" є теоретичною основою для створення наукових основ розробки алгоритмів для розрахунку та проектування машин для прокладання підземних комунікацій.

Анотація

Майбутньому фахівцеві в галузі машинобудування необхідні глибокі знання зі створення і випуску конкурентоспроможної продукції – машин та обладнання для прокладання підземних інженерних комунікацій: газо- і водопроводи низького тиску, оптико-волоконні та інших ліній зв’язку, термо- і гідромеліоративних систем, енергосилових ліній, протиерозійних систем та інших комунікацій із використанням сучасних поліетиленових матеріалів. У результаті вивчення дисципліни магістра оволодівають знаннями про алгоритми створення сучасних машин та обладнання для прокладання підземних комунікацій, по їх дослідженню, визначенню раціональних параметрів, проектуванню із використанням сучасних програмних засобів.

Ключові слова: машини, обладнання, підземні комунікації, наукові дослідження, алгоритми створення.

Annotation

The Future specialist in industry of engineer need thorough knowledge from creation and producing of competitive products – machines and equipment for the gasket of underground engineering communications: gaso- and plumbings of LP, optico-volokonnyх and other flow lines, thermo- and gidromeliorativnyх systems, energoso-silovyih lines, protieryoznyih systems and other communications with the use of modern polyethylene materials. As a result of study of discipline master's degrees seize knowledge about the algorithms of creation of modern machines and equipment for the gasket of underground communications, on their research to determination of rational parameters, planning with the use of modern programmatic facilities.

Key words: machines, equipments, underground communications, creation
1. Опис навчальної дисципліни

<table>
<thead>
<tr>
<th>Найменування показників</th>
<th>Галузь знань, спеціальність, рівень вищої освіти</th>
<th>Характеристика навчальної дисципліни</th>
</tr>
</thead>
<tbody>
<tr>
<td>Кількість кредитів – 5</td>
<td>Галузь знань 13 Механічна інженерія</td>
<td>Денна форма навчання</td>
</tr>
<tr>
<td>Модулів – 1</td>
<td>Спеціальність 133 Галузево машинобудування</td>
<td>Заочна форма навчання</td>
</tr>
<tr>
<td>Розрахунково-графічна робота</td>
<td>Спеціалізація «Підйомнотransportні, дорожні, будівельні, меліоративні машини та обладнання»</td>
<td>Цикл професійної та практичної підготовки</td>
</tr>
<tr>
<td>Змістових модулів – 2</td>
<td>Рівень вищої освіти: магістр</td>
<td>Рік підготовки:</td>
</tr>
<tr>
<td>Загальна кількість годин: - денна форма навчання – 150</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>- заочна форма навчання – 150</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>Тижневих годин: - денна форма навчання аудиторних – 3,6; самостійної роботи – 6,4</td>
<td></td>
<td>Семестр</td>
</tr>
<tr>
<td>Рівень вищої освіти: магістр</td>
<td>Практичні</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Лабораторні</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Індивідуальна робота</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Самостійна робота</td>
<td></td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Вид контролю: письмовий екзамен</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Примітка. Співвідношення кількості аудиторних занять до самостійної і індивідуальної роботи становить 63% для денного форми навчання та 10% для заочної форми навчання.

2. Мета та завдання викладання дисципліни

Для проведення економічних реформ в країні, інтеграції української економіки в СОТ необхідні глибокі знання в галузі машинобудування для проектування і випуску конкурентоспроможної продукції машинобудування: машин та обладнання для прокладки підземних комунікацій. Основу таких знань дає дисципліна „Наукові основи створення машин для прокладання підземних комунікацій”.

Мета викладання дисципліни „Наукові основи створення машини для прокладання підземних комунікацій” (НОСМПІК) є формування у майбутніх фахівців інженерних знань щодо проектування, вибору та ефективного застосування машин та обладнання для прокладання підземних комунікацій в різних галузях матеріального виробництва.

Основним завданням навчальної дисципліни є: навчити студентів застосовувати загальні методи дослідження і проектування спеціальних машин та обладнання для прокладки підземних комунікацій, а також для вдосконалення існуючих і створення нових надійних і економічних машин для земляних робіт.

В результаті вивчення дисципліни студенти повинні:
- знаходити будову та роботу МПІК, їх елементів, основи розрахунку та проектування;
- вміти самостійно визначати раціональні параметри МПІК з використанням
сучасних ЕОМ; проєктувати машини згідно ЄСКД та обов’язковим технічним вимогам.

Знання спеціального курсу НОСМППК дозволить майбутнім фахівцям створювати і застосовувати машини та обладнання, які дозволяють найбільш ефективно прокладати підземні комунікації без проведення ре культваційних робіт.

Навчальна програма розрахована на студентів, які навчаються за освітньо-кваліфікаційними програмами магістра, а також для слухачів факультетів підвищення кваліфікації і інститутів післядипломної освіти.

3. Програма навчальної дисципліни
Змістовий модуль 1
Створення машин для заглиблення підземних комунікацій із денної поверхні

Тема 1. Основні типи, способи і техніка для будівництва підземних комунікацій. Основні типи підземних комунікацій і вимоги до їх будівництва. Загальні обов’язкові технічні вимоги. Спеціальні і додаткові технічні вимоги.

Сучасні способи і техніка для укладання ЛПО у підземний горизонт. Траншеїний і безтраншеїний способи. Проколювання. Розкочування. Протискування. Горизонтальне і направлене буріння.

Тема 2. Аналіз конструкцій землеробних робочих органів (ЗРО) безтраншеїних укладачів. Аналіз активних, вібраційних і віброударних конструкцій. Аналіз пасивно-активних конструкцій. Аналіз пасивних традиційних конструкцій. Конструкція і принцип дії кабелекладачів. Багаторушна схема розробки грунту.

Визначення опору переміщення для однорожного (традиційного) ножа.

Тема 3. Визначення оптимальних параметрів і опору переміщення двох’ярусного ЗРО з прямолінійними різальними частинами. Схема дії сил на двоножкову грунторозробну систему. Визначення математичної моделі для тягового зусилля. Визначення оптимального кута різання переднього ножа. Визначення питомого опору різання другого ножа. Дослідження питомої опору різання у другому ярусі, оптимального кута різання переднього ножа і кута різання другого ножа.

Методологія визначення основних параметрів.

Тема 4. Визначення поздовжньої форми різальних частин двох’ярусного ЗРО. Схема дії сил на двоношний ЗРО. Критерій оптимізації навісних та причіп них ЗРО. Визначення функціоналу критерія оптимізації. Рівняння Ейлера та умова трасверсальності. Рішення рівняння та його апроксимація. Побудова оптимального поздовжнього профілю верхньої різальної частини.

Визначення рознесення різальних частин по вертикалі та горизонталі. Побудова поздовжнього профілю для нижньої різальної частини.

Методологія визначення поздовжнього профілю різальних частин.

Тема 5. Основні принципи і умови створення багаторусних грунторозбірних органів. Умови застосування і визначення мінімальної кількості ярусів багаторусних ЗРО.

Суть принципу незалежності роботи попередніх грунторозбірних органів від наступних.
Умови застосування і суть принципу рівності витрат грунту у суміжних ярусах (принципи рівності об’ємних і масових витрат).
Умови застосування і суть принципу рівності площ поперечного перерізу зрізаного шару грунту і прохідних вікон у кожному ярусі.
Умови застосування і суть комбінованого принципу конструювання.

Тема 6. Визначення форми, параметрів і опору переміщення багаторурсних безвідвальних ЗРО. Визначення кількості, висоти і ширини ярусів для виходу змінного кута нахилю бічних стінок розроблюваної щілини до горизонту по глибині.
Визначення ширини ярусів при умові постійного кута нахилю бічних стінок щілини до горизонту по глибині.
Визначення опору переміщенню і оптимальних параметрів багаторурсних безвідвальних ЗРО.

Тема 7. Форма і параметри багаторурсних ЗРО відального типу. Прийняті припущення. Схема дії сил на відальний грунторозробний орган багаторусного ЗРО. Визначення напряму руху грунту по косому клину і оптимальної висоти ярусів. Визначення оптимального кута захвату. Залежність висоти ярусів від кута захвату грунторозробних органів.

Змістовий модуль 2
Створення машин і обладнання для прокладання підземних комунікацій способом затягування із приямка

Тема 8. Прокладання підземних комунікацій способом проколювання. Сутність проколювання. Статичний, вібраційний, віброударний, біонічно-синтезований прокол. Технологія способу.
Конструкція, принцип дії і область застосування установок статичної дії, для вібпроколювання. Конструкція і принцип дії пнев- і гідропробійників. Конструкція і принцип дії біонічно-синтезованих пристроїв. Конструкція накінечників.
Методика інженерного розрахунку гідропневмоударних пробійників.
Обґрунтування параметрів біонічно-синтезованих підземнорухомих пристроїв: напружень у грунті на граничні пружній і пластичної зон; контактного тиску грунту на бічну поверхню пристрою, діаметра зони руйнування грунту, довжини фіксуючої камери, середньої щільності грунту у зоні руйнування. Залежність параметрів від глибини проходки свердловини і швидкості переміщення підземнорухомого пристрою. Охорона праці під час прокладання підземних комунікацій.

Тема 9. Прокладання підземних комунікацій способом протискування і горизонтального буріння. Загальні поняття, сутність і область застосування протискування і вібпротискування.
Конструкції і принцип дії установок для протискування труб і горизонтального буріння.
Розрахунок напірного зусильля для протискування кільцевидного накінечника труб. Залежність питомих лобових опорів від співвідношення діаметрів кільцевидного накінечника і нормального тиску грунту та коефіцієнта терття на циліндричній частині накінечника від діаметра свердловини.
Тema 10. Прокладання підземних комунікацій способом розкочування. Сутність способу. Конструкція, принцип дії і область застосування установок для розкочування свердловин у ґрунті. Визначення основних параметрів розкатника ґрунту.

Тema 11. Прокладання підземних комунікацій способом направленого буріння. Сутність, технологія і область застосування способу.

Конструкція і принцип дії машин і установок направленого буріння, область їх застосування. Конструкція бурових головок і розшарувачів. Конструкція і принцип дії установок направленого гідпропоколу.

Методика розрахунку зусилля проходження пілотної свердловини, опору руху розшаровача і трубопроводу.

Тema 12. Машини та обладнання для влаштування вертикальних свердловин. Загальні відомості. Класифікація бурових машин, їх конструкція та принцип дії. Теорія робочого процесу бурових машин. Вибір і розрахунок основних параметрів.

4. Структура навчальної дисципліни

Тематичний план та розподіл навчального часу

<table>
<thead>
<tr>
<th>Назви тем змістових модулів</th>
<th>Денна форма</th>
<th>Заочна форма</th>
<th>Кількість годин</th>
<th>К-сть балів</th>
</tr>
</thead>
<tbody>
<tr>
<td>Всього</td>
<td>Лекції</td>
<td>Практ.</td>
<td>Лабор.</td>
<td>Самост.</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Змістовий модуль 1. Машини для заглиблення підземних комунікацій із денної поверхні

Тема 1. Основні типи, способи і техніка для будівництва підземних комунікацій

Тема 2. Аналіз конструкцій землерійних робочих органів (ЗРО) без траншейних укладчиків

Тема 3. Визначення оптимальних параметрів і опору переміщенню двох’ярусного ЗРО

Тема 4. Визначення поздовжньої форми і параметри різальних частин двох’ярусного ЗРО

Тема 5. Основні принципи і умови створення багатоярусних ЗРО

Тема 6. Визначення форми і параметрів багатоярусних безвідвальних ЗРО

Тема 7. Форма і параметри багатоярусних ЗРО відвального типу
<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Тема заняття</th>
<th>К-ть годин денна форма</th>
<th>заочна форма</th>
<th>К-сть балів</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Визначення оптимальних параметрів і опору переміщення двох’ярусного ЗРО</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Визначення форми і параметрів багаторусних безвіддячних ЗРО</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Визначення форми і параметрів багаторусних ЗРО віддячного типу</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Розрахунок основних параметрів гідропневмоударних пробійників</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>Розрахунок основних параметрів біонічно-синтезованих підземнорухомих пристроїв</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Розрахунок напірного зусилля для протискування стаційних трубопроводів</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Розрахунок зусилля проходження пілотної свердловини</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Розрахунок опору руху розширувача і трубопроводу</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Всього</td>
<td></td>
<td>18</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

5. Тематика практичних занять

6. Тематика лабораторних занять

<table>
<thead>
<tr>
<th>№ з/п</th>
<th>Теми лабораторних занять</th>
<th>Кількість годин денна форма</th>
<th>заочна форма</th>
<th>К-сть балів</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вивчення фізичної суті робочого процесу традиційними одноярусними ножами</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Вивчення фізичної суті адаптованого ножа</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
7. Самостійна робота
Самостійна робота студентів виконується в кількості – 80 год.
Розподіл годин самостійної роботи студентів (денна форма навчання): підготовка до аудиторних занять (0,5 год. на 1 год. аудиторних занять) – 0,5·58=29 год.; підготовка до підсумкового контролю (6 год. на 1 єврокредит) - 6·5=30 год.; розрахунково-графічна робота – 12 год.; на самостійне вивчення теоретичного матеріалу, який не вивчався під час аудиторних занять – 21 год. (150-58-0,5·58-6·5,0-12=21 год.)

7.1. Завдання для самостійної роботи

<table>
<thead>
<tr>
<th>№ з/п</th>
<th>Назва теми</th>
<th>К-сть годин</th>
<th>Рекомендована література</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Вимоги до будівництва підземних комунікацій</td>
<td>1</td>
<td>[1], [3], [5]</td>
</tr>
<tr>
<td>2</td>
<td>Конструкція і принцип дії кабелеукладачів</td>
<td>1</td>
<td>[1], [5]</td>
</tr>
<tr>
<td>3</td>
<td>Конструкція і принцип дії установок для проколювання грунту</td>
<td>1</td>
<td>[1], [2], [6]</td>
</tr>
<tr>
<td>4</td>
<td>Прокладання підземних комунікацій способом протискування і горизонтального буріння</td>
<td>1</td>
<td>[1], [2], [4], [6], [10], [11]</td>
</tr>
<tr>
<td>5</td>
<td>Прокладання підземних комунікацій способом розкочування</td>
<td>1</td>
<td>[1], [2]</td>
</tr>
<tr>
<td>6</td>
<td>Конструкція і принцип дії машин і установок направленого буріння</td>
<td>8</td>
<td>[1], [2], [6]</td>
</tr>
<tr>
<td>7</td>
<td>Машини та обладнання для влаштування вертикальних свердловин</td>
<td>8</td>
<td>[1], [14], [15]</td>
</tr>
<tr>
<td></td>
<td>Всього</td>
<td></td>
<td>21</td>
</tr>
</tbody>
</table>

8. Індивідуальне навчально-дослідне завдання (ІНДЗ)
Індивідуальна робота виконується студентом відповідно до варіанту на тему: "Визначення поздовжньої форми параметрів двох’ярусного ЗРО".
Мета індивідуального завдання (ІНДЗ) – закріпити знання, набуті при вивченні теоретичного курсу, вивчити методику розрахунку і проектування багатоярусних ЗРО на прикладі двоярусного ЗРО, розвивати навики самостійного рішення конкретних прикладних інженерних задач, використання технічної літератури, складання розрахунково-пояснювальної записки у відповідності з правилами ЄСКД та застосування сучасних ПЕОМ.
9. Методи навчання

На лекційних заняттях використовуються проекційний ліхтар або кодоскоп. Для цього застосовується спеціально розроблений короткий (скелетний) конспект лекцій у вигляді окремих карток і прозірок для кожної теми. На картках і прозірках чітко зображено необхідні рисунки, написані основні формулі.

На практичних заняттях студенти вивчають методики розрахунку і проектування машин і обладнання для прокладки підземних комунікацій. При цьому використовують калькулятори та іншу обчислювальну техніку.

На лабораторних заняттях використовуються технічні засоби навчання, моделі, експериментальні методи дослідження та автоматизовані засоби обробки експериментальних даних.

10. Методи контролю

Для визначення рівня засвоєння студентами навчального матеріалу використовуються такі методи оцінювання знань: поточне тестування після вивчення кожного змістового модуля; оцінювання виконання практичних та лабораторних робіт; оцінювання виконання індивідуального завдання та самостійної роботи; підсумковий іспит.

11. Розподіл балів

<table>
<thead>
<tr>
<th>Поточне тестування та самостійна робота</th>
<th>Відвідуванні, виконання та здача практичної роботи</th>
<th>Відвідуванні, виконання та здача лабораторної роботи</th>
<th>Виконання та захист ПРГ</th>
<th>Підсумковий контроль (екзамен)</th>
<th>Сума балів</th>
</tr>
</thead>
<tbody>
<tr>
<td>Змістовий модуль 1</td>
<td>Змістовий модуль 2</td>
<td>СРС з представлень конспекту</td>
<td>T1</td>
<td>T2</td>
<td>T3</td>
</tr>
<tr>
<td>1+1</td>
<td>2+3</td>
<td>T10</td>
<td>2</td>
<td>T3</td>
<td>1</td>
</tr>
<tr>
<td>T2</td>
<td>2+1</td>
<td>T9</td>
<td>2+3</td>
<td>T12</td>
<td>5</td>
</tr>
<tr>
<td>T3</td>
<td>2+2</td>
<td>T1</td>
<td>2+4</td>
<td>7</td>
<td>T7</td>
</tr>
</tbody>
</table>

Примітка: 1. Виконання та задача практичних і лабораторних робіт, а також виконання та захист РГР є обов’язковими пунктами виконання.

2. Підсумковий контроль обов’язково проводиться, якщо не проводиться поточне тестування в повному обсязі, у протилежному випадку підсумковий контроль проводиться за бажанням студента.

Оцінка виставляється на основі шкали узгодження національної системи оцінювання знань студентів з рекомендаціями ЄКТС (ECTS).

10
Шкала оцінювання

<table>
<thead>
<tr>
<th>Сума балів за всі види навчальної діяльності</th>
<th>Оцінка за національною шкалою</th>
<th>Оцінка за національною шкалою</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 – 100</td>
<td>відмінно</td>
<td>відмінно</td>
</tr>
<tr>
<td>82-89</td>
<td>добре</td>
<td>добре</td>
</tr>
<tr>
<td>74-81</td>
<td>злабло</td>
<td>злабло</td>
</tr>
<tr>
<td>64-73</td>
<td>незадовільно з можливістю повторного складання</td>
<td>незадовільно з можливістю повторного складання</td>
</tr>
<tr>
<td>60-63</td>
<td>незадовільно з обов’язковим повторним вивченням дисципліни</td>
<td>незадовільно з обов’язковим повторним вивченням дисципліни</td>
</tr>
<tr>
<td>35-59</td>
<td>не захаровано з можливістю повторного складання</td>
<td>не захаровано з обов’язковим повторним вивченням дисципліни</td>
</tr>
<tr>
<td>0-34</td>
<td>не захаровано з обов’язковим повторним вивченням дисципліни</td>
<td>не захаровано з обов’язковим повторним вивченням дисципліни</td>
</tr>
</tbody>
</table>

Поточний контроль знань студентів проводиться на лабораторних і практичних заняттях, на консультаціях. Підсумковий контроль знань студентів проводиться на письмовому іспиті.

До іспиту допускаються студенти, які успішно здали всі практичні і лабораторні роботи, захистили розрахунково-графічну роботу і за підсумками поточного контролю набрали не менше 20 балів.

12. Методичне забезпечення дисципліни

Методичне забезпечення навчальної дисципліни «Наукові основи створення машин для прокладання підземних комунікацій» включає:
- конспект лекцій на паперовому носії;
- комплект прозирок (фолії);
- методичні вказівки до практичних занять;
- методичні вказівки до лабораторних занять;
- методичні вказівки для виконання РГР;
- моделі і макети робочих органів;
- грунтовий канал, обладнаний візком з тяговими засобами, навісю, вимірювальною апаратуєю та засобами автоматизованої обробки експериментальних даних;
- інформаційні та ілюстраційні матеріали;
- комплект тестів для поточного контролю знань;
- комплект екзаменатійних білетів для підсумкового контролю знань.

13. Рекомендована література

Базова

3. Кравец С.В., Каслин Н.Д., Руднев В.К., Супонев В.Н. Машины для бест-

Допоміжна

Електронний репозиторій НУВГП

14. Інформаційні ресурси

2. Рівненська обласна універсальна наукова бібліотека (м. Рівне, майдан Корolenка, 6) / [Електронний ресурс]. – Режим доступу: http://www.libr.rv.ua/

3. Рівненська централізовані бібліотечні системи (м. Рівне, вул. Київська, 44) / [Електронний ресурс]. – Режим доступу: http://cbs.rv.ua/

5. Рівненська обласна універсальна наукова бібліотека (м. Рівне, майдан Корolenка, 6) / [Електронний ресурс]. – Режим доступу: http://www.libr.rv.ua/

6. Рівненська централізовані бібліотечні системи (м. Рівне, вул. Київська, 44) / [Електронний ресурс]. – Режим доступу: http://cbs.rv.ua/

7. Цифровий репозиторій Харківського національного університету імені В.Н. Каразіна / [Електронний ресурс]. – Режим доступу: http://dspace.univer.kharkov.ua/handle/123456789/568

Національний університет водного господарства та природокористування
Національний університет водного господарства та природокористування