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ABSTRACT: The processing steps of information obtained as a result of generating digital
biomedical signals and images with locally concentrated signs are formalized by an aggregate
of sets of characteristics of the instrumental examination process. A mathematical model of
the instrumental examination process of patients is developed. Critical states of the instru-
mental examination are identified with the model introduced.

1 INTRODUCTION

The introduction of computer and information technologies into medical practice has led to
the creation of a variety of medical information systems (MIS), the main purpose of which
is to improve the effectiveness of management processes (medical diagnostic, administrative-
economiic, financial and other activities) in health care to raise the quality of medical care for
the population. The most common MIS were obtained as part of diagnostic complexes in
the form of MIS for laboratory diagnostic studies, with which various instrumental examina-
tions of patients are carried out. One of the varieties of MIS are biomedical decision sup-
port systems (DSS), as part of hardware and software diagnostic complexes, which support
decision-making based on various models (for example, heuristic or mathematical). When
creating such models, it is important to take into account the specifics of both the representa-
tion and the manifestations of clinical information.

Currently, there is a wide range of computer diagnostic systems in various subject domains
of medicine (Povoroznyuk 2011, Kotyra 2014, Zlepko et al. 2016, Kovalenko et al. 2017,
Wojcik & Smolarz 2017), in which various mathematical methods of decision support are
used e.g. deterministic logic (Kobrinsky 2005), probabilistic approach (Sadegh-Zadeh 2011,
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Selivanova et al. 2016), fuzzy logic (Innocent et al. 2005, Rotshtein et al. 2006, Rotshtein et al.
2008, Smolarz et al. 2012), neural networks (Timchenko et al. 2002, Ceylana et al. 2009), etc.,
and modern information technologies, including telemedicine (Krawczyk 3003, Yang et al.
2015, Vladismirsky 2011, Hwang 2016, Serkova et al. 2017). The results of instrumental exam-
inations by medical specialists are the conclusions that are formed from the morphological
analysis of biomedical signals and images (BMS/I) with locally concentrated features (LCF),
so the methods of their processing for the purpose of determining the diagnostic features are
given great attention (Faynzilberg 2015, Trzupek et al. 2011). However, at the present time
there is no single formalised approach to solving the problem of morphological analysis of
BMS/I with LCF for constructing biomedical DSS, and neither are there any stages of trans-
formation of information obtained as a result of instrumental examination of patients. Thus,
in order to improve the effectiveness of instrumental examination, it is necessary to perform a
system analysis of the decision-making process, which is based on the processing of the BMS/I
with the LCF, in order to identify the critical elements of the decision support system that can
lead to the making of incorrect decisions or refusal to make decisions.

The aim of the research is to develop a mathematical model of instrumental examination
of patients, with the help of which it would be possible to formalise the knowledge generated
as a result of biomedical information processing, including the analysis of biomedical signals
and images with locally concentrated signs, to improve the efficiency of providing medical
services and minimising the risk of medical errors.

Objectives of the research:

1. To formalise the processing steps of information obtained from the analysis of biomedical
signals and images with locally concentrated features, while conducting an instrumental
examination of patients.

2. To develop a mathematical model of the process of instrumental examination of patients,
taking into account the stages of information transformation.

2 SOLUTION

To construct a mathematical model of the instrumental examination process, let us formalise
the knowledge generated as a result of processing digital BMS/I with LCF by an aggregate
of sets of characteristics of the instrumental examination process (Burtsev et al. 2013). Since
a one-dimensional signal can be considered as a particular case of a two-dimensional sig-
nal (image), then, in order to formalise the posed problem of the morphological analysis of
BMS/I with LCEF, the indices determining the dimensionality of the signal are omitted.

Based on the analysis of the stages of biomedical information processing during labora-
tory diagnostic studies, the following mathematical model of the instrumental examination
process is proposed:

M, =(MR,X,SV,B,C.D,D,R,f), !

where MR= { mr, |ie {1,2,...,nMR}} is a set of patient data from medical records;
X={x[lie{L2,...,n,}} is a set of registered digital BMS/I with LCF;
A {s e SNy SOy S(""-’V) ze £1,2% j is a set of diagnostic features; S is a subset of

diagnostic features of BMS/I with LCF S< )is a subset of diagnostic features of anamnesis;
S®) is a subset of features derived from previous examinations; V' = {VJ | je{l,2,.. ”s}}

a set of values of diagnostic features S; B= { B ] je{l1,2,.. ns}} is a set of value ranges of

diagnostic features S (diagnostic ranges); €= {C lie{12,.. nc}} is a set of symptom-com-
plexes; D= d |k e {,2,..., j,}} is a set of possible diagnoses in a given subject domain, i.e.
the a{{phabet of diagnoses; D=1 D, |z €{1,2,...,n;} is a set of fuzzy diagnostic conclusions;

|ze {12 nR}} is a set of recommendations; f = {fxs’ers’fSV’fVB>fBC’fCDafDR}
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is a set of correspondences between pairs of appropriate sets MR, X,S,V,B,C,D, D,
R; nyp iy ng, i np ns,n, € N are  the cardinalities of  the corresponding  sets
MR, X,S,C,D, D, R; D is the natural number set.

Let us consider in detail the elements of the proposed mathematical model M,, of the
instrumental examination process.

In the instrumental examination process there is a registered set of BMS/I with LCF pro-
vided by the survey protocol in this subject domain: X = { x[lie {1,2,... nX}} where x[-] is
the i-th BMS/I with LCF; n, is the number of BMS/I with LCF. For example, the set of ECG
leads is formed as a result of electrocardiographic examination, and the set of projections
of the left and right mammary glands is formed as a result of mammography examination,
and so on.

Also, in accordance with regulatory documents there is a determined subset of diag-
nostic features S&) ={s}jX ’l je {1’2"“’"X,-}} by processing each BMS/I x][], where s{*) is
the j-th feature of the i-th BMS/I with LCF; n, is the number of diagnostic features for

X
the i-th BMS/I, at that SN S¥ = if i# j and US}"”: SE; S® = is a set of
i=1 X
diagnostic features for all BMS/I with LCF, i.e. for the set X, at that ny, =|S®|= n,

2 : S i : 2 =1

is the total number of diagnostic features. In addition, a subset of diagnostic features of
an anamnesis S = {s(")lie L2 "sm}} and a subset of features derived from previ-
ous examinations S&re) = {s“"e‘) ie{l2,.. S(,,,m}} are formed from the patient’s medi-

cal records, where s, s are the i-th feature of anamnesis and previous examinations,
respectively; 1.,y are the number of diagnostic features of anamnesis and previous
examinations, respectively. It must be noted that if the diagnostic features of anamnesis and/
or previous examinations are not taken into account, then S¥ =@ (ny,, =0) and/or
S =G (nype = 0).

Then the set of all diagnostic features can be written as S = {S, 5, € SE Y SU Y SPre)
Vjie{l,2,...,ns}}, where S, is the j-th diagnostic feature; ng= |S<X>|+ |S<A>]+ |S<Prev) =
Nyxy + Ngsy + Agpy 18 the total number of diagnostic features.

In addition, it must be noted that the set S can be represented by subsets of traditional S,
and alternative S, diagnostic features (S, # S,), i.e. S=S,US,,5nS,=D.

The elements of the set of diagnostic features S can be measured in different scales from
the numerical scale (for example, the parameters of the structural elements of the BMS/I with
the LCF) to the ordinal (for example, the degree of the disease manifestation from the previ-
ous examination data) and the nominal ones (for example, the presence of risk factors from
anamnesis). Therefore, a measurement scale ¥ is defined for each diagnostic feature s,.

If the feature s,is numeric (quantltatlve) then the set of values ¥ of the numerical feature s;
is defined as follows V,= {v|ve v, € IR}, where v_.,v__ are the minimum

mm’ max] mm’ max min? “ max
and maximum values of anumerical feature s,, i.e. the range limits of a numerical feature meas-
uring; R is the set of real numbers. If the feature s;is ordinal or nominal then the set of values

V', of the ordinal or nominal feature s;is defined as follows: V', = {v., v, € Lke {l,2,.. My, }},

where v, is the k-th value of diagnostic feature s,; Z is the set of integers; n, is the number
of values for the diagnostic feature s,. Then for all the diagnostic features S the set of val-
ues of diagnostic features ¥ can be determmed asp¥ = {V | je{l,2,.. ns}} Since the set
of diagnostic features S can be represented as S= S® U SWyU S then the set of val-
ues of the diagnostic features ¥ can also be represented as V' = VU V@Y VFre) | where
X A ren are subsets of values of diagnostic features of BMS/I with LCF, anamnesis
and previous examinations, respectively.

In order to bring the values of all diagnostic features ¥ to one measurement scale, a set of

value ranges (diagnostic ranges) B, = {bjk ke {1,2,...,nBj}} is defined for each of the diag-

nostic features s,, j = 1,ng, where b is the k-th value range of the diagnostic feature s;;n,
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is the number of value ranges for the diagnostic feature s, The setting of the allowable value
range of a numerical feature s, for diagnostic ranges b, corresponds to values of the type
“norm”, “below/above the norm”, “boundary values”, “dangerous values”, “critical values”,
etc., characteristic of ordinal features and accepted in the given objective domain of medi-
cine. The number of diagnostic ranges n, can be different for different features. Then for all
diagnostic features, the set of diagnostic ranges B can be defined as B = { & ] je{,2,.. .,ns}}.

Also in the mathematical model, the set of symptom-complexes is defined as
C= {C,-|i € {1,2,...,nc}}, where C, is the i-th symptom-complex of a system of diagnoses
D= { dk|k € {1,2,...,nD}}; 7. is the number of symptom-complexes; d, is the k- th diagnosis;
n,, is the number of diagnoses. A symptom-complex is an informative combination of the
values of diagnostic ranges relative to the system of diagnoses D: C, = ( B> oD L niedy b ),
where b;, € B, are the values of diagnostic ranges; j, € {1,2,...,ns} are the indices of diag-
nostic ranges included in the symptom-complex C;; k; € {1,2,...,n, } are the indices of values
of diagnostic ranges from the setof B;;n, =|B, | is the number of value ranges in B, .

To implement a biomedical DSS, the necessary condition is that the set of possible diag-
noses D must form a complete group of incompatible events, i.e.

o Ua )= a1 @)

The set of recommendations R= { r,|l € {l,2,...,nR}}, where 7, is the /-th recommendation
nR nR
list, must also form a complete group of incompatible events, i.e. p Ur, = Z p(n)=1.

1= /=1
Lettheset D= { d ke fl,2,..,n D}} be a universal set of diagnoses, and let there be given a

family of characteristic functions #; (d,), j = 1,n;, that show the affiliation of the k-th diai-

nosis to the j-th diagnostic conclusion. Then the fuzzy subset D, = {( dys (d,())|d,( D)

corresponds to the fuzzy concept “the j-th diagnostic conclusion”. In this case the character-
istic function x;; (d,) takes a value from the linearly ordered set of accessories M = [0,1].
Let us denote the set of fuzzy concepts (diagnostic conclusions) as D = { D, | je{l,2,.. "”b}}
(Filatova & Galkin 2012), where f)/. is the j-th fuzzy set of diagnoses; n; is the
number of fuzzy diagnostic conclusions. In particular, if deterministic logic is used
for diagnostics, then M = {0,1} and the fuzzy set is considered as a classical one, at that

D= {(d].,,ab}_ (d/.)) d;€ D,py (d))=1; = {dj}- In applying probabilistic logic, each diagno-
sis d, is given by a conditional probability p(d, |C;) which is the characteristic function
/sz(dk), ia D= {(dk,/li,/. (dk))‘dk € D.py, (d.)= p(d, |Cj)}- In the latter case, the fuzzy

set D, is subnormal, since sup #; (d,)# 1, therefore, it must be normalised.

In addition to the*%ets discussed above, a set of correspondences
F={ Fass Sawss fsv> Joms Focs Jeps for | is defined in the mathematical model M, of the instru-
mental examination process (1). Let us consider in more detail the components of this set.

In the mathematical model M,, there is a correspondence fyq:X — S that
relates the recorded BMS/I with LCF X_to the subset of diagnostic features S™@:
Jes(x D= { s;ls;€ ST A(x[]s5,)e X x S(’”}. Since the correspondence f is everywhere
definite, i.e. D(fys)= X is the domain of f,, then the correspondence is a mapping, at that
R(fys)= S@ is the codomain of fy,. The correspondence fy is not functional for the second
component, since many diagnostic features of BMS/I with LCF are formed for each signal
x{-). This mapping is realised by the procedure developed by the authors for the morpho-
logical analysis of BMS/I with LCF (Povoroznyuk et al. 2015). The stage of morphological
analysis of BMS/I with LCF is one of the most important stages of instrumental examina-
tion, since errors at this stage lead to acceptance of erroneous diagnostic solutions or to
refusal to make a decision in general. This stage requires the use of specialised methods of
data morphological analysis taking into account the features of BMS/I with LCF and the
methods of their transformation.
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Also there is a correspondence f,,s: MR— S that links patient data from a medical
record with the set of diagnostic features S:

Sus(mr) = { S; |S/-'€ (SO U S®) A (mr;,s,)€ MRX (SWU S(Prev))}‘

The domain of f,,sis D(f,,s)# MR, since not all the patient data from the medical
record correspond to the diagnostic features (for example, the patient’s name or the date
of the instrumental examination), so the correspondence f,,¢ is not a mapping, at that
R(fyy,s)= S@WuU S is the codomain of f,,.

The pair of correspondences fys and f,,, s allows to form the set of diagnostic features S.

The function f, : S — ¥ sets a bijective mapping of the set of diagnostic features S onto

the set of diagnostic feature values V: fg, (s,)= { VJIV/ eV A(s;,V;)e SX V}.
The set of possible combinations of diagnostic feature values CP,, is a Cartesian prod-
Je{2,...ns}:CHR =V X .. XV, = {(vl,... % ) V€ VisessgV,y, € V,,S},

>Vng

uct of sets V,

where |CB,|= H [V/| is the cardinality of the set CP,. The set of possible combi-

nations of diaé:ﬁostic ranges CP, is a Cartesian product of sets B, j€{l2,...ns}:

CP,= B x..xB,_= {(b1,...,bns) b€ B,,....b, € an}’ where |CP,|=[] |B] is the cardi-
i=1

nality of the set CP,.

Then the correspondence f,, : Ch, — CP, defines a surjective and non-injective mapping
of the set of tuples of diagnostic feature values CP,, onto the set of tuples of value ranges

CPy frp(cv))= { chy, ‘cbk € CPy A(cv;,ch )€ CB, x CPB}, where cv, = (vl,...,vns ) is the j-th
tuple made up of elements v, € V,,...,v, €V, ;ch, = (bl,...,b ) is the k-th tuple made up of

ng
elements b € B,,...,, € B, . The mapping is not injective due to the fact that |CF,|# |CP,|,
since in the general case V,.rqt IB,-] (for example, for numerical features). In fact, the mapping
fyg1s the transition from the space of diagnostic feature values CP, into the space of diag-
nostic ranges CP,.
Projections of the set CP, on all possible combinations of coordinate axes form a set SP

of all possible combinations of diagnostic ranges:

SP= {P'?CPB,l"'fl,...,f,,..,iqCPB i,],q€ {1,2,...,n5}} = {SR |ie {l,2,...,ns},}},

where SP, is the i-th system (tuple) of diagnostic ranges, formed by the corresponding projec-
tion; ngp < (21— 1) is the number of possible projections.

Then it is possible to set the correspondence f,.:SP— C of the set of possible combina-
tions of diagnostic ranges SP onto the set of symptom-complexes C:

Foc(SP)= { C,|c,e CA(SE.C))e sPx C}.

This correspondence is not a mapping, since only an informative combination of diagnos-
tic ranges relative to the diagnoses system D is included in the set of symptom-complexes, i.e.
C= {Ci |C.e SP,ie {1,2,...,nC}} c SP, where C, is the i-th symptom-complex relative to the
diagnoses system D; n. < ng, is the number of symptom-complexes.

The informativity (usefulness) of the diagnostic ranges B, included in the system SP, rela-
tive to the diagnoses system D, is determined in two ways:

1. by expert assessments;
2. by calculation of the informativity of the features using the training dataset.

In the first case, on the basis of their own experience, experts, who are doctors, determine
the diagnostic value of each of the ranges included in the system SP,. In the second case, the
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concepts of entropy or quantities of information are used to determine the informativity of
the diagnostic ranges included in the system SP..

Based on the statistical information obtained from the training dataset, it is possible to cal-
culate the a priori probabilities p(d,) of each established diagnosis d, € D. Since condition (2)
is fulfilled, the uncertainty of the system of possible diagnoses by definition can be estimated
by binary entropy (Akhutin et al. 2002):

H(D)=-Y" p(d,)log, p(d,). 3)

where H(D) is the measure of the uncertainty (entropy) of the system of diagnoses; p(d,) is
the a priori probability of the k-th diagnosis d,.
The entropy value H(D)2=0, and for equ1probable diagnoses, i.e. if p(d, )——~ for
}’l

Vk=1n, the value H(D) will be max1mum at that expression (3) takes the following "form:

np 1
H(D)= -3, pld,)log, pd)= =3, ~-logs = logs

The entropy value H(D) as a rlneasure of L%he uncertainty of the system of diagnoses D
changes when new information enters the system in the form of values of diagnostic ranges
obtained as a result of instrumental examination of a patient. In this case, the decrease in
entropy occurs by an amount equal to the amount of information entered. The minimum
entropy value H(D) =0 and corresponds to a valid event.

The uncertainty of the system of possible diagnoses D can also be estimated by the amount
of information that can be introduced by the system of diagnostic ranges SP,. In this case, for
the diagnostic range system SP, and the system of diagnoses D, there is a valid inequality

I,(SF)< H(D). 4)

Expression (4) becomes equality only for a system of deterministic diagnostic ranges.

Then the amount of information entered into the system of diagnoses as a result of meas-
uring the diagnostic ranges b, included in the system SP, is defined as the difference between
the entropy value before and after the instrumental examination:

I1,(SF)= H(D)- H(D|SF), ®)

where 7,(SP,) is the amount of information entered into the diagnosis system after measuring
the feature ranges b, included in the system SP, as a result of an instrumental examination
of a patient; H(D) i is initial (before the 1nstrumental examination) entropy of the system of
diagnoses; H(D|SP)) is the entropy of the system of diagnoses after an instrumental examina-
tion, taking into account the measurement of the diagnostic ranges b; included in the system
SP, (conditional entropy).

The conditional entropy H(D|SP)) of the system of diagnoses D, provided that all diagnos-
tic ranges b, from the system SP, are measured, is calculated as follows:

H(D|SP)="Y p(b)H(DI,), ©)

J=1

where H(D|b) is the partial conditional entropy of the system of dlagnoses D, provided that
the dlagnostlc range b, from the system SP, has been measured; ng, is the number of diag-
nostic ranges in the system SP,

Taking into account the general definition of entropy (3), the partial conditional entropy
H(DIb) can be calculated as

H(D|b)==Y pdlb,)log, pd,b,), )
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where p(d,|b;) is a posteriori conditional probability of diagnosis d,, provided that the diag-
nostic range b from the system SP, has been measured.
Then, substltutlng (7) into (6), we obtain

nsp np

H(D|SR)=~Y, Y, p(b)p(d,|b,)log, p(d,1b,).

j=1 k=1

Thus, according to expressions (5)—(7), the value 7,,(SP) based on the amount of informa-
tion received characterises the diagnostic value of the system of diagnostic ranges SP, in
relation to the system of diagnoses D. At the same time, the system of the diagnostic range
SP, has a different informativity with respect to each diagnosis d, € D, i.e. for some diagnoses
the system SP, under consideration will be more informative than for others, and for some
diagnoses it may not be informative at all.

Then the total informativity 7,(SP,) of the system of diagnostic ranges SP, relative to the
system of diagnoses D can be determined by means of the values of the private informativity

of the system SP, relative to the diagnosis d, as follows: I,(SP)= 2 p(d )1, (SF), where

1, (SP) is the private informativity of the system of diagnostic ranges SP, relative to the
diagnosis d,. At the same time

* 1,(SP)>0, if the system SP, has positive information (the values of the diagnostic ranges
b; 1nc1uded in the system SP, conﬁrm the diagnosis d,);

. I , (SF)< 0, if the system SP, has negative information (the values of diagnostic ranges b,
included in the system SP, refute the diagnosis d,);

* I,(SP)= 0, if the system SP, does not carry information relative to the diagnosis d,.

In the instrumental examination of a patient, the diagnostic value of the system SP, rela-
tive to the system of diagnoses D for uncorrelated diagnostic ranges b, from the system SP, is
determined by the following expression:

nsp,

1,(SP)= Y, 1,(b)). (®
j=1

p
where 1,,(b; )22 p(d)1, (b,) is the amount of information of the diagnostic range value b,

relative to the s?sltem of diagnoses D; I, (b;) is the private information value of the diagnos-
tic range value b, relative to the diagnosis d,.

Depending on the scale of measurement of the values of diagnostic ranges b, the private
informativity 7, (b;) can be determined in various ways (Povoroznyuk 2011, Gubler 1978).
If the dlagnostlc ranges b, are correlated, the diagnostic value of the system of dependent
diagnostic ranges SP, relatlve to the system of diagnoses D is determined by the follow-
ing expression: ID(SP) I(b)+ I,(b,|8) +1,(b|58) +. +ID(bn$P lbé ..b), where
I,(b;|b,,...b) is conditional private informativity. Since a sufficiently large number of
diagnostlc ranges is formed as a result of instrumental examination of a patient, certain dif-
ficulties arise in calculating 1,(SP,) by (4) related to the volumes and representativity of the
training dataset (the so-called “curse of dimensionality”), therefore, even with strong correla-
tion values of diagnostic ranges b,, the diagnostic value 7,(SP)) is calculated by (8).

To verify the completeness of the description, when condition (4) is satisfied, we use the
information completeness coetficient £, (SF, £J) o1 the system oI dragniostic ramnges S, witl
respect to the diagnosis system D, which is calculated as follows (Povoroznyuk 2011):

1p(SF)

kic(S‘Pi?D): H(D) 2

©)

Analogously, we calculate the coefficient of information completeness k,(b,, D) of each
value of the diagnostic range b,
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1,(b,)
H(D)

ki(b;, D)= (10)

Since the process of measuring the values of diagnostic ranges is associated with time,
material, financial and other costs, then taking into account the overall complexity of meas-
uring the value of the diagnostic range b,, it is possible to calculate the diagnostic value of
coefficient k,,(b,, D) by the following expression (Povoroznyuk 2011):

k. (b.,D)
kv(bwD):—L—;a (11)
st k,.(B,)

where k,, (b)) is the total assessment of the complexity of measuring the value of the diagnos-
tic range b,.

According to expression (11), the diagnostic value of the diagnostic range value b, is greater
the greater is its information completeness and the less the complexity of its measurement.
Then for the system of independent diagnostic ranges SP, taking into account expressions

(8), (9)-(11), the following relations are valid:

nsp. L
k.(SP,D)=Y k.(b,,D); k;,(SP,D)="Y k, (b, D),
j=1

=1

where k, (SP,D),k,(SP,D) are the coefficients of information completeness and diag-
nostic value of the system of diagnostic ranges SP, relative to the system of diagnoses D,
respectively.

Thus, the correspondence f;. is determined by decisive rules that take into account the
informativity, completeness of the description, compactness and consistency of the values of
the diagnostic ranges included in the symptom-complexes C, e C.

Taking into account the obtained symptom-complexes in the mathematical model M,
the correspondence f,:C— D of the set of symptom-complexes C onto the set of fuzzy
diagnostic conclusions is D: f,(C,)= { D, |[),( e DA(C,.D,)e Cx ﬁ}. In general, the cor-
respondence f,., is not a mapping of the set C onto the set D, since the elements of the set D
are fuzzy diagnostic conclusions; therefore, the same symptom-complex may point to different
fuzzy diagnostic conclusions and several different symptom-complexes may point to one fuzzy
diagnostic conclusion. The implementation of the correspondence f,,, is associated with the
use of various diagnostic decision rules, adopted, for example, in decision theory or the theory
of pattern recognition (Povoroznyuk 2011, Burtsev et al. 2013, Ignat’ieva et al. 2008).

Also, in the mathematical model M,,, the correspondence f,:D—> R of the set of fuzzy
diagnostic conclusions D onto the set of recommendations R is given, and this correspond-
ence is surjective and not injective. The mapping is non-injective because #n, = n,, i.e. differ-
ent fuzzy diagnostic solutions may correspond to the same recommendation.

Thus, the mathematical model of instrumental examination of patients is developed, which
is used for the formalisation of knowledge formed as a result of the information processing,
obtained also from the analysis of digital BMS/I with LCF.

3 CONCLUSIONS

1. A mathematical model of the instrumental examination process of patients is developed,
taking into account the transformation stages of information obtained also from the anal-
ysis of recorded BMS/I with: LCF, which made it possible to identify critical states of the
instrumental examination.

2. Further research is focused on the development of the methods necessary to implement
the relevant stages of information processing in biomedical decision support systems.
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