УДК 544.31; 544.016

Мороз М. В., к.ф.-м.н., доцент (Національний університет водного господарства та природокористування, м. Рівне)

ТЕРМОДИНАМІЧНІ ВЛАСТИВОСТІ ФАЗ СИСТЕМИ Аg₂Te–Bi–Bi₂Te₃

Розраховано значення термодинамічних функцій граничних твердих розчинів фаз $Bi_{14}Te_6$, Bi_2Te , BiTe та Bi_2Te_3 системи $Ag_2Te-Bi-Bi_2Te_3$ в стандартному стані на основі методу ерс. *Ключові слова:* неорганічні сполуки, термодинамічні функції, метод ерс.

Т-х простір системи Ag-Bi-Te (I) характеризується конгруентним виділенням із розплаву сполук Ag₂Te (1232 K), Bi₂Te₃ (818 K) та AgBiTe₂ (828 K) [1–3]. Потрійна сполука існує в обмеженому інтервалі температур. При *T*≤716±5 К має місце твердотільний розпад AgBiTe₂ з виділенням фаз Ag₂Te та Bi₂Te₃. *Т*-х площини Ag₂Te-Bi₂Te₃ та Ag₂Te-Ві ділять (І) на три квазіпотрійні системи Ag₂Te-Te-Bi₂Te₃, Ag₂Te-Bi-Ві2Те3 та Ад2Те-Ві-Ад. На ділянці Ад-Те системи (І) формуються проміжні фази Ag₂Te, Ag_{1.9}Te та Ag₅Te₃. Області існування, поліморфні перетворення, термодинамічні властивості структурних різновидностей зазначених фаз детально описані в [4]. Відомості про термодинамічні властивості Ag_2Te як фази змінного складу в T-x просторі системи Ag₂Te-Bi-Ag відсутні. У квазіпотрійній системі Ag₂Te-Bi-Bi₂Te₃ встановлено існування проміжних фаз Bi₂Te₃, BiTe, Bi₂Te та Bi₁₄Te₆. Кристалічні ґратки фаз сформовані із гексагональних шаруватих атомних площин розміщених перпендикулярно вісі с. Різняться гратки кількістю та порядком чередування атомних площин. Значення параметру а для граток сполук є близькими [5].

Термодинамічні властивості зазначених фаз вивчені недостатньо. Для Ві₂Те та Ві₁₄Те₆ встановлено лише температури перитектичних процесів утворення (розпаду): 693 К та 585 К відповідно [5]. Плавиться ВіТе інконгруентно при 813 К. Для ентальпії та ентропії утворення фази із елементів отримані значення: $-\Delta H_{298}^0 = 27.2 \text{ кДж/моль}$ [6] або $-\Delta H_{298}^0 = 34.6 \text{ кДж/моль}, -\Delta S_{298}^0 = 111.0 \pm 12.6 \text{ Дж/(моль·К)}$ [7]. Калориметричиними вимірюваннями для Ві₂Те₃ встановлені значення $-\Delta H_{298}^0 = 78.7 \pm 2.1 \text{ кДж/моль}, S_{298}^0 = 261 \pm 85 \text{ Дж/(моль·К)}$ [6, 7], $-\Delta H_{670}^0 = 100.6 \ \kappa Дж/моль [5]. Термодинамічні властивості Ві₂Те₃ вивчались методом ЕРС в інтервалі 503–533 К. Із залежності є=є($ *T* $) отримано <math>-\Delta G_{298}^0 = 44.8 \ \kappa Дж/моль, -\Delta H_{298}^0 = 45.4 \ \kappa Дж/моль, <math>\Delta S_{298}^0 = -2.1 \ Дж/(моль · K)$ [8]. Відомості про $\Delta H_{пл.}, \ \Delta H_{вип.}, \ \Delta S_{пл.}, \ C_{p, 298}$ фази Ві₂Те₃ містять роботи [6, 7, 9].

Рівноважний концентраційний простір подвійних та більш складних систем є поєднанням фаз граничних твердих розчинів на основі сполук стехіометричного складу. Термодинамічні властивості сполук стехіометричного складу та твердих розчинів на їх основі можуть суттєво різнитись. Відомості про зазначені властивості фаз є базовою основою математичного моделювання фізико-хімічних процесів T-x простору неорганічних систем.

Мета роботи: використовуючи метод EPC [10–12], розрахувати значення термодинамічних функцій граничних твердих розчинів фаз Bi_2Te_3 , BiTe, Bi_2Te та $Bi_{14}Te_6$ квазіпотрійної системи $Ag_2Te-Bi-Bi_2Te_3$ в стандартному стані.

Розрахункам значень термодинамічних функцій передували експериментальні роботи по вивченню методами фізико-хімічного аналізу способу триангуляції субсолідусної частини *T*-х простору системи (I), встановленню змісту сумарних потенціалоутворюючих процесів у гальванічних елементах (електрохімічних комірках – ЕХК), вивченню залежності ЕРС (є) ЕХК від температури.

Потенціалоутворюючі процеси здійснені в ЕХК структури ClAglAgllскло $Ag_2GeS_3|D|C$ (C – струмові (графітові) електроди, Agllскло Ag_2GeS_3 – двошарова мембрана з чисто іонною (Ag^+) електропровідністю, D – гетерофазні сплави (I)). Двошарова іоноселективна мембрана блокує електронну складову електропровідності ЕХК в передкристалізаційному для скла Ag_2GeS_3 інтервалі температур 560–630 К.

Синтез кристалічних та склоподібних сплавів здійснено сплавленням елементів напівпровідникової чистоти у вакуумованих до тиску $p\sim1$ Па кварцевих ампулах. Скло Ag₂GeS₃ отримано гартуванням розплаву у воді з льодом [13], йодид срібла – осадженням із суміші водних розчинів нітрату срібла та йодиду калію [14]. Сплави подрібнювали до розмірів частинок \leq 5 мкм. Гомогенізуючий відпал кристалічного порошкоподібного матеріалу здійснено у вакуумованих кварцевих ампулах при температурах на 20–30 К нижче температур солідуса. В подальшому його використовували для встановлення положення ліній двофазних рівноваг в триелементній частині *Т*-х простору (I), виготовлення ЕХК. Порошкоподібні складові комірок впресовували в наскрізні отвори діаметром 2 мм, виготовлені у фторопластовій основі, до густини ρ =(0.93±0.02) ρ_0 , де ρ_0 – експериментально визначена густина литих сплавів. Нагрів комірок з кроком 3–5 К здійснено в печі, наповненій H₂ та Ar₂, взятих в молярному співвідношенні 1:9, p=10⁵ Па. Фазовий склад сплавів контролювався методами рентгенофазового (РФА) та диференціально-термічного аналізів (ДТА). РФА виконано на дифрактометрі STOE STADI Р з лінійно позиційно-прецизійним детектором PSD за схемою модифікованої геометрії Гіньє (Guinier), метод на проходження: Си $K\alpha_1$ випромінювання, вигнутий монохроматор Ge (111); 2 θ/ω -сканування. Обробку дифракційних масивів здійснено за допомогою пакету програм STOE WinX^{POW} (версія 2.21) [15] та PowderCell (версія 2.3) [16].

Залежності є=є(T) комірок в інтервалі 490–550 К визначені методом температурного титрування [17]. Повнота зв'язування Ад⁺ в рівноважну суміш фаз D при температурах $T \ge 500$ К встановлена в окремих експериментах, шляхом ДТА та РФА механічних сумішей порошкоподібних срібла та складів D, витриманих в умовах температурного титрування ЕХК. Значення є визначені безпосередньо вольтметром з вхідним опором >10¹⁰ Ом. При повторних нагрівах комірок розраховані значення термодинамічних функцій фаз відтворювались в межах похибок зазначених в таблиці.

Результати та обговорення. На рис. 1 зображено триангуляцію

Рис. 1. Триангуляція концентраційної ділянки Ag₂Te–Bi–Bi₂Te₃ системи Ag–Bi–Te в інтервалі температур 300–600 К: *1*, 2 – одно- та двофазні сплави

концентраційного простору квазіпотрійної системи Ад2Те-Ві-Ві2Те3 у вигляді ліній двофазних рівноваг. Положення ліній дозволяє використати метод ЕРС для розрахунку термодинамічних властивостей сполук $Bi_{14}Te_6$, Bi₂Te, BiTe та Ві2Тез. Сплави Д виготовляли із елементів та сполук взятих в наступних молярних співвілношеннях Ag:Bi₁₄Te₆=6:1, концентраційна ділянка Ag₂Te- $Bi_{14}Te_6-Bi;$ Ag:Bi₂Te=1:7. концентраційна ділянка Ag₂Te-Bi₂Te-Bi₁₄Te₆; Аg:BiTe=1:2, концентраційна ділянка Ag₂Te-BiTe-Bi₂Te; Ag:Bi₂Te₃=1:1, концентраційна ділянка Ag₂Te-Bi₂Te₃-BiTe. Рівноважні трифазні сплави $D \in$ поєднанням граничних твердих розчинів сполук та вісмуту зазначених ділянок концентраційного простору. Залежності EPC комірок від температури $\varepsilon = \varepsilon(T)$ містить рис. 2. Злом на кривій $\varepsilon_1 = \varepsilon_1(T)$ при T = 531 К пов'язаний із плавленням потрійної евтектики системи Ag₂Te-Bi₂Te₃.

Рис. 2. Температурні залежності ЕРС гальванічних елементів ClAglAgIlскло Ag₂GeS₃lDlC, де D сплави концентраційних ділянок: $I - Ag_2Te-Bi_{14}Te_6-Bi; 2 - Ag_2Te-Bi_14Te_6-Bi_2Te; 3 - Ag_2Te-BiTe-Bi_2Te; 4 - Ag_2Te-BiTe-Bi_2Te_3$

*Тремодинамічні властивості Ві*₁₄*Te*₆, *Ві*₂*Te*, *ВіТе та Ві*₂*Te*₃ Реакції моля срібла та сплавів електродів *D* по схемах

Ag +
$$\frac{1}{12}$$
Bi₁₄Te₆ = $\frac{1}{2}$ Ag₂Te + $\frac{7}{6}$ Bi, (1)

$$Ag + \frac{7}{2}Bi_2Te = \frac{1}{2}Ag_2Te + \frac{1}{2}Bi_{14}Te_6,$$
 (2)

Ag +BiTe =
$$\frac{1}{2}$$
Ag₂Te + $\frac{1}{2}$ Bi₂Te, (3)

$$Ag + \frac{1}{2}Bi_2Te_3 = \frac{1}{2}Ag_2Te + BiTe$$
 (4)

здійснені в умовах оборотних процесів розрядки гальванічних елементів (*p*, *T*=const) та потенціалоформуючі процеси при тих же умовах, характеризуються однаковими по модулю значеннями енергії Гіббса, тобто

$$-\Delta G_{T,(1)-(4)} = n_e F \varepsilon_{(1)-(4)}(T).$$
(5)

У рівнянні (5)

$$\Delta G_{T,(1)} = \frac{1}{2} \Delta G_{T,Ag_2Te} - \frac{1}{12} \Delta G_{T,Bi_{14}Te_6} + \frac{7}{6} \Delta G_{T,Bi} - \Delta G_{T,Ag}, \qquad (6)$$

$$\Delta G_{T,(2)} = \frac{1}{2} \Delta G_{T,Ag_2Te} + \frac{1}{2} \Delta G_{T,Bi_{14}Te_6} - \frac{7}{6} \Delta G_{T,Bi_2Te} - \Delta G_{T,Ag}, \quad (7)$$

$$\Delta G_{T,(3)} = \frac{1}{2} \Delta G_{T,Ag_2Te} + \frac{1}{2} \Delta G_{T,Bi_2Te} - \Delta G_{T,BiTe} - \Delta G_{T,Ag}, \qquad (8)$$

$$\Delta G_{T,(4)} = \frac{1}{2} \Delta G_{T,Ag_2Te} + \Delta G_{T,BiTe} - \frac{7}{6} \Delta G_{T,Bi_2Te_3} - \Delta G_{T,Ag}, \tag{9}$$

де $\Delta G_{T, Ag_2Te, Bi_{14}Te_6, Bi_2Te, BiTe, Bi_2Te_3}$ – енергії Гіббса утворення із елементів зазначених сполук при температурі *T*; $\Delta G_{T, Ag, Bi}$ – різниця енергій

Гіббса процесів утворення із елементів моля срібла, вісмуту при температурах 298 К та T, $n_e=1$ – валентність потенціалоформуючого іону (Ag⁺), F=96487.1 Кл/моль – число Фарадея, $\varepsilon_{(1)-(4)}(T)$ – рівняння температурної залежності ЕРС гальванічних елементів з електродами D чотирьох зазначених концентраційних ділянок. Рівноважний стан в сплавах D ЕХК досягається при температурах що перевищують 500±10 К.

Розраховані в наближенні ΔC_p =const вклади змін енергії Гіббса елементів в значення $\Delta G_{T,(1)-(4)}$ для інтервалу T=298–600 К складають менше 0.5%. В подальших розрахунках значення $\Delta G_{T,Ag,Bi}$ не враховувались. У наближенні малих відмінностей значень термодинамічних функцій граничних твердих розчинів сполук у межуючих трифазних концентраційних ділянках, (6)–(9) утворюють систему лінійних рівнянь, що зв'язують $\Delta G_{T,(1)-(4)}$ та $\Delta G_{T,Ag_2Te,Bi_14Te_6,Bi_2Te,Bi_2Te_3}$:

$$-F\varepsilon_{(1)}(T) = \frac{1}{2}\Delta G_{T,Ag_2Te} - \frac{1}{12}\Delta G_{T,Bi_{14}Te_6},$$
(10)

$$-F\varepsilon_{(2)}(T) = \frac{1}{2}\Delta G_{T, Ag_2Te} + \frac{1}{2}\Delta G_{T, Bi_{14}Te_6} - \frac{7}{6}\Delta G_{T, Bi_2Te},$$
(11)

$$-F\epsilon_{(3)}(T) = \frac{1}{2}\Delta G_{T, Ag_2Te} + \frac{1}{2}\Delta G_{T, Bi_2Te} - \Delta G_{T, BiTe},$$
 (12)

$$-F\varepsilon_{(4)}(T) = \frac{1}{2}\Delta G_{T, Ag_2Te} + \Delta G_{T, BiTe} - \frac{7}{6}\Delta G_{T, Bi_2Te_3}.$$
 (13)

Розв'язком системи рівнянь (10)–(13) відносно $\Delta G_{T, Bi_{14}Te_{6}, Bi_{2}Te, Bi_{7}Te_{3}}$ отримано:

$$\Delta G_{T,\mathrm{Bi}_{14}\mathrm{Te}_6} = 6\Delta G_{T,\mathrm{Ag}_2\mathrm{Te}} + 12F\varepsilon_1(T), \qquad (14)$$

$$\Delta G_{T,Bi_2Te} = \frac{1}{7} \Delta G_{T,Ag_2Te} + \frac{1}{7} \Delta G_{T,Bi_{14}Te_6} + \frac{2}{7} F \varepsilon_2(T), \qquad (15)$$

$$\Delta G_{T,\text{BiTe}} = \frac{1}{2} \Delta G_{T,\text{Ag}_2\text{Te}} + \frac{1}{2} \Delta G_{T,\text{Bi}_2\text{Te}} + F \varepsilon_3(T), \qquad (16)$$

$$\Delta G_{T, \operatorname{Bi}_2\operatorname{Te}_3} = \Delta G_{T, \operatorname{Ag}_2\operatorname{Te}} + 2\Delta G_{T, \operatorname{Bi}\operatorname{Te}} + 2F\varepsilon_4(T).$$
(17)

Розраховані МНК температурні залежностей ЕРС комірок описуються рівняннями:

 ε_1 , мВ = (-166.174 ± 1.664) + (0.5093±0.0033)·10⁻³*T*, R^2 = 0.9997, (18) інтервал температур 505–545 К;

 ε_2 , мB = (-105.847 ± 1.355) + (0.6083±0.0028)·10⁻³*T*, R^2 = 0.9998, (19) інтервал температур 500–540 К;

 ε_3 , мB = (-39.336 ± 2.919) + (0.4694±0.0056)·10⁻³*T*, R^2 = 0.9992, (20) інтервал температур 500–540 К;

 ε_4 , мB = (-9.6111 ± 2.6603) + (0.4638±0.0051)·10⁻³*T*, R^2 = 0.98, (21) інтервал температур 495–530 К.

З урахуванням (18)–(21) та рівняння температурної залежності енергії Гіббса для β-Ag₂Te [4]

$$\Delta G_{T,Ag_2Te} = (-26.013 \pm 1.858) - (42.8 \pm 9) \cdot 10^{-3}T, \qquad (22)$$

співвідношення (14)-(17) набувають вигляду:

$$\Delta G_{T,\mathrm{Bi}_{14}\mathrm{Te}_{6}}, \, \kappa \Im \mathfrak{K}/\mathrm{MOJL} = (-350 \pm 11) + (333 \pm 54) \cdot 10^{-3}T \,, \tag{23}$$

$$\Delta G_{T,\text{Bi}_{2}\text{Te}}, \, \kappa \square \#/\text{моль} = (-56.6 \pm 1.7) + (58.2 \pm 7.9) \cdot 10^{-3} T), \quad (24)$$

$$\Delta G_{T,\text{BiTe}}, \, \kappa \square \mathscr{K} / \text{моль} = (-45.1 \pm 1.3) + (53.0 \pm 6.0) \cdot 10^{-3} T \,, \tag{25}$$

$$\Delta G_{T.Bi_{0}Te_{2}}, \, \kappa \exists \mathsf{x}/\mathsf{monb} = (-118.1 \pm 3.2) + (152 \pm 15) \cdot 10^{-3} T \,. \tag{26}$$

Рівняння (23)–(26) описують температурні залежності енергії Гіббса процесу утворення із елементів граничних твердих розчинів сполук в концентраційній площині системи Ag₂Te–Bi–Bi₂Te₃. Розраховані на їх основі величини термодинамічних функцій фаз в стандартному стані містить таблиця.

				Таблиця
Значення термодинамічних функцій фаз системи Ag ₂ Te-Bi-Bi ₂ Te ₃				
Фаза	$-\Delta G_{298}^{0}$,	$-\Delta H_{298}^0$,	ΔS_{298}^0 ,	$(T \cdot \Delta S^0)_{298},$
	кДж/моль	кДж/моль	Дж/моль К	кДж/моль
Bi ₁₄ Te ₆	250.3±19.7	349.5±11.3	-333±54	99.3±16.2
Bi ₂ Te	39.3±2.9	56.6±1.7	-58.2±7.9	17.3±2.4
BiTe	29.3±2.4	45.1±1.3	-53.0±6.0	15.8±1.8
Bi ₂ Te ₃	72.8±15.3	118.1±3.2	-152 ± 15	45.3±3.9

Вісник Національного університету водного господарства та природокористування

Невизначеність термодинамічних величин, пов'язана з використанням в розрахунках наближення незначних відмінностей властивостей фаз в межуючих трифазних ділянках, залишається невідомою і не відмічена в таблиці. Для фаз постійного складу зазначеною невизначеністю можна знехтувати.

Висновки. Отримано аналітичні рівняння температурної залежності енергії Гіббса процесу утворення із елементів граничних твердих розчинів фаз Ві₁₄Те₆, Ві₂Те, ВіТе та Ві₂Те₃ в концентраційній площині системи Ag₂Te–Bi–Bi₂Te₃. Розраховано значення термодинамічних функцій фаз в стандартному стані в наближенні $\frac{\partial \Delta H}{\partial T} = \frac{\partial \Delta S}{\partial T} = 0$. Встано-

влено значний внесок структурного параметру $(T\Delta S^0)_{298}$ в значення ΔG^0_{298} , що є свідченням аморфізації сплавів граничних твердих розчинів.

1. Хансен М., Андерко К. Структуры двойных сплавов. – М. : Металлургиздат, 1962. 2. Stegherr A. Metallkunde / Stegherr A., Echerlin P., Wald F. - 1963. -V. 54. – Р. 598–601. 3. Бабанлы Н. Б., Алиев И. И., Бабанлы К. Н., Юсибов Ю. А. // Журн. неорган. химии. 2011. – Т. 56. № 9. – С. 1547–1553. 4. Tesfaye F., Taskinen P., Aspiala M., Feng D. // Intermetallics. - 2013. - V. 34. - P. 56-62. 5. Полупроводниковые соединения, их получение и свойства / Абрикосов Н. Х., Банкина В. Ф., Порецкая Н. В. и др. – М. : Наука, 1967. 6. Термические константы веществ. / под ред. В. П. Глушко. – М. : ВИНИТИ, 1968. – Вып. 3. 7. Mills К. С. Thermodynamic data for inorganic sulphides, selenides, tellurides. - London : Butterworths, 1974. 8. Semenkovich S. A., Melekh B. T. // Chemical bonds in solids. – 1995. – Р. 159–162. 9. Устюгов Г. П., Вигдорович Е. Н., Тимошин И. А. // Изв. АН СССР. Неорган. материалы. – 1969. – Т. 5. – № 1. – С. 166–169. 10. Вагнер К. Термодинамика сплавов / К. Вагнер. – М. : Из-во лит-ры по черной и цветной металлургии, 1957. 11. Электрохимические методы исследования в термодинамике металлических систем / Морачевский А. Г., Воронин Г. Ф., Гейдерих В. А., Куценок И. Б. – М. : Академкнига, 2003. 12. Бабанлы М. Б. Метод электродвижуших сил в термодинамике сложных полупроводниковых веществ / Бабанлы М. Б., Юсибов Ю. А., Абишов В. Т. – Баку: Азерб. РПСНИО, 1992. 13. Robinel E., Carette B., Ribes M. // Non-Cryst. Solids. 1983. – V. 57. N. 1. – P. 49–58. 14. Руководство по неорганическому синтезу: в 6 томах. Т. 4. / под. ред. Брауэра Г. – М. : Мир, 1985. 15. Diffractometer Stoe WinX^{POW}, version 2.21, Stoe & Cie GmbH, Darmstadt, 2007. 16. Kraus W. PowderCell for Windows (version 2.3) / Kraus W., Nolze G. – Berlin : Federal Institute for Materials Research and Testing, February 1999. 17. Воронин М. В., Осадчий Е. Г. // Неорган. материалы. – 2013. – Т. 49. № 6. – С. 585–589.

Рецензент: д.х.н., проф. Колупаєв Б. С. (Рівненський державний гуманітарний університет)

Moroz M. V., Candidate of Physical and Mathematical Sciences, Associate Professor (National University of Water Management and Nature Resources Use, Rivne)

THERMODYNAMIC PROPERTIES OF PHASE Ag2Te-Bi-Bi2Te3

On base emf method the values of thermodynamic functions of the saturated solutions of $Bi_{14}Te_6$, Bi_2Te , $BiTe \tau a Bi_2Te_3$ phases of the $Ag_2Te-Bi-Bi_2Te_3$ system were calculated in standard state. *Keywords:* inorganic compound, thermodynamic functions, emf method.

Мороз М. В., к.ф.-м.н., доцент (Национальный университет водного хозяйства и природопользования, г. Ровно)

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА ФАЗ СИСТЕМЫ Аg₂Te-Bi-Bi₂Te₃

Рассчитаны значения термодинамических функций граничных твердых растворов фаз Bi₁₄Te₆, Bi₂Te, BiTe та Bi₂Te₃ системы Ag₂Te–Bi–Bi₂Te₃ в стандартном состоянии на основе метода эдс. *Ключевые слова:* неорганические соединения, термодинамические функции, метод эдс.