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Abstract. The purpose of research is determination of a dependency of a stress 

state for composite elastomer-cable tractive element with a broken structure on a 

nonlinear dependency of shear modulus on deformations in the elastomeric shell. 

Research methodology is in analytical solution of a model of a composite tractive 

element with disturbed structure and a deformation-dependent shear modulus of an 

elastomeric shell. Results are in constructing an algorithm for determining a stress 

state of a composite tractive element with broken structure and a deformation-

dependent shear modulus. Scientific novelty is in determining a character of de-

pendency for a stress state of a composite tractive element on a nonlinear dependen-

cy of shear modulus on deformations. Practical application of research is in a possi-

bility to determine the dependency of a stress state of a composite elastomer-cable 

tractive element on a nonlinear shear modulus allows considering the effect of this 

phenomenon on the tractive element strength and ensures an increase of its operation-

al safety. 

Introduction 
Continuous improvement of technical systems in the fields of min-

ing technologies [1-9], transportation and hoisting [10-12], deep-sea 

mining [13, 14], and dynamics of technical systems [15-19] facilitate 

wider and more thorough development of analytical and computa-

tional simulation methods of processes and phenomena occurring 

within the systems. Currently, researchers in many countries are con-

ducting complex scientific studies aimed at developing methods and 

means of modernizing lifting and transporting complexes with the 

aim of increasing operational efficiency and safety of mining 

transport equipment. Composite elastomer-cable tractive elements, in 

particular rubber-cable ropes (RCR), also known as steel cord belts, 

are widely used in hoisting and transporting machines [20-24]. At the 

same time, these tractive elements have significant lengths. Conveyor 

belts of a closed shape are created by connecting ends of belts. Cables 

at belt ends in such connections are not mechanically connected and 

interact through rubber layers. Damage accumulates in ropes during 

use. One type of damage is rupture of one of reinforcing elements 

(cables). Rupture of continuity of cables and presence of non-

continuing cables, in accordance with the Saint-Venant’s principle, 

are sources of disturbance of a stress-strain state in a rope (belt). 

State of Question and Research Problem 

Rope strength in the cross-section of cable breakage is much low-

er [25-27], it is also lower in butt joints [28]. In paper [29], it is sug-

gested to determine a stress-strain state of spatial structures rein-

forced with parallel elements by means of electrical modelling. A 
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method of determining characteristics of materials with a system of 

regularly arranged parallel reinforcing elements is suggested in the 

article [30]. The papers [31-40] are devoted to investigation of fea-

tures of a rope (belt) stress state, considering its interaction with 

structural elements of a machine. Experience indicates that there is a 

nonlinear dependency of stresses in elastic materials on their defor-

mations, and rubber is no exception to this. Rubber layers in rubber-

cable ropes ensure the connection of cables, determine a mechanism 

of redistribution of forces between the cables, which affects the op-

erational characteristics of the entire rope. In these papers, the issue 

of a nonlinear law of rubber deformation is not considered. At the 

same time, it constitutes an actual scientific and technical problem of 

considering the specified feature during the design and continuous 

control of the condition of hoisting and transporting machines with a 

rubber-cable tractive element. The solution allows considering the 

influence of deformation character in rubber on rope strength and 

provides a possibility of increasing operational safety of rubber-cable 

ropes (belts). 

Generally, the dependency graph of stresses on deformations has 

a shape of a curved line. The main factor in the occurrence of shear 

stresses in rubber layers of a rope or belt is breakage of continuity of 

cables. Discontinuity of cables occurs in the event of cable breakage 

and in butt joints of rubber-cable ropes and belts. In butt-joint con-

nections, no cables at both ends of the connected belts continue. A 

cable break or a cable end is a source of stress-strain state disturb-

ance in a rope (belt). Well-known studies [26] indicate that defor-

mations of rubber take place practically only in the layers adjacent to 

the broken cable. Deformation values are maximum in the cross-

section of cable continuity breakage and decrease exponentially with 

increasing distance from the specified cross-section. 

Consideration of Natural Changes in Mechanical Properties of 

Elastic Shell on Stress-Strain State of a Rope 

Loading forces on cables and their displacements without consid-

ering rubber aging, according to [26] are determined by dependen-

cies 

( ) ( )( )
1

1

e e cos 0.5 ,m m
M

x x
i m m m m

m

p E F A B i P
β β β m

−
−

=
= − − +∑  (1) 



 544 

( ) ( )( )
1

1

e e cos 0.5 ,m m
M

x x
i m m m

m

Р x
u A B i

E F

β β m α
−

−

=
= + − + +∑  (2) 

where M is amount of cables in a rope, i is cable number ( )1 i M≤ ≤ ; 

Am,Bm are integration constants; E, F are, respectively, reduced ten-

sile modulus of elasticity and cross-sectional area of a cable in a rope 

(belt); x is coordinate axis directed along the rope, P is average load 

on a cable in a rope; 
( )

2 [1 cos( )]G
m m

Gbk

h d E F
β m= −

−
; 

π
m

m

M
m = ; 

h is distance between cables; b is rope thickness; d is cable diameter; 

G is shear modulus of elastic (rubber) layer connecting the cables, kG 

is coefficient of shape influence of rubber located between cables on 

shear rigidity; α is cable displacement as a rigid body. 

Natural change in mechanical properties during aging process of 

an elastic shell is associated with a change in modulus of elasticity 

and shear modulus. According to (1) and (2), shear modulus affects a 

stress-strain state of a rope. Assume that a law of change of shear 

modulus of an elastic (rubber) layer is known. Its value is given by 

the following expression 

G=G0f/(t),     (3) 

where G0 is shear modulus right after rope (belt) production (t=0). 

Formulate a physical model of rope deformation made of M ca-

bles of considerable length. Cable with number J has a continuity 

breakage. This breakage is located at an infinitely large distance 

from rope edges. Rope is loaded with a tensile force. Tensile force 

ensures an average loading on cables equal to one. Direct an x-axis 

along the rope. Place axis origin point at a cross-section of cable 

breakage. Consider a rope part for which ( )0 x≤ ≤ ∞ . 

From a condition of limited displacements of cables and limited 

loading forces on cables for an infinite growth of x-coordinate, as-

sume that Am=0. Consider rope displacement as a rigid body equal to 

zero. Then, expressions (1) and (2) obtain the following forms 

( )( )
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where 
( )

* 02 ( )
[1 cos( )]G

m m
G f t bk

h d E F
β m= −

−
.  

Displacements of all cables, except for the broken one, in the 

cross-section x 0 are absent. Displacement of a broken cable is de-

noted as U0. Displacements of cables in the cross-section x=0 are 

defined as product of U0 and δ-function on a limited axis length of 

discrete cable numbers. This makes it possible to determine the vec-

tor of unknown constants of integration from expression (5) through 

one unknown quantity 

( )( )0
2

cos 0.5m mB U J
M

m= − .   (6) 

The unknown 0U  is determined from a condition that a loading 

force (4) of a broken cable is zero 

( )( )
0 1

2 *

1

2 cos 0.5
M

m m
m

P M
U

E F Jm β
−

=

=

−∑
.  (7) 

Expressions (4) - (7) make it possible to determine a stress-strain 

state of a rope of considerable length on a hoisting machine and a 

conveyor belt of considerable length in case of breakage of an arbi-

trary cable, considering the aging period of their elastic shell at the 

moment of cable breaking. 

Known displacements of cables (5) allow determining relative 

shear of cables. Difference in shear of adjacent cables is accompa-

nied by occurrence of tangent stresses in an elastic shell. The tangent 

stresses are at their maximum values in a plane of axii of rope cables. 

The distances between the nearest points on surfaces of adjacent ca-

bles are minimal in this plane. Tangents of shear angles are deter-

mined by the following expression 

( ) ( )1
tan , 1

j j
j

u u
j M

h
γ +−

= ≤ < ,  (8) 

where j is layer number. 
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For a rope of RCR-3150 type consisting of five cables, determine 

a distribution of internal forces and tangents of shear angles for an 

elastic shell in a plane where centers of cross-sections in cables are 

located. Assume that as a result of natural changes in rubber proper-

ties, a shear modulus has doubled. Apply an external load so that the 

average load on cables is equal to one. The noted internal loading 

forces on cables in this case are equal to a coefficient of uneven load-

ing on cables. Results for cases ( ) 2f T =  (curve 1) and (0) 1f =  

(curve 2) are indicated in Fig. 1 and 2. 

 
Fig. 1. Distribution of coefficients of uneven loading on cables  

with numbers i along rope length l 
 

According to graphs shown in the Figure 1, loads on cables 

caused by continuity breakage in of one of them lead to a local redis-

tribution of forces practically only between two cables - the broken 

one and the one adjacent to it. Accordingly, in a case of breakage in a 

non-extreme cable, the forces practically change only in three cables 

- the broken one and two adjacent ones to it. The forces change sig-

nificantly over a length of up to 2 m. The extreme values of internal 

loading forces on cables do not depend on change in shear modulus 

of rubber material over time.  

Distribution of tangents of shear angles in rubber (Fig. 2) also in-

dicates an insignificant effect on rubber shear angles between cables. 
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Fig. 2. Distribution of maximum tangents of shear angles in material located in lay-

ers with numbers j between cables along rope length l  

 

Significant rubber shear is observed only between the broken ca-

ble and the one adjacent to it along the cable length. Shear angles of 

rubber between other cables are much smaller compared to shears in 

a zone of local redistribution of forces and stresses. They change lit-

tle because of rubber aging over time. Length of conveyors and 

hoisting heights for using rubber-cable ropes and belts exceed 100 m. 

This makes it possible to consider the above assumption of an infi-

nite rope length and an infinite distance from a cable breakage to a 

belt (rope) end. 

The second feature of influence of operating time on a rope 

stress-strain state is a local decrease in a value of shear modulus of 

elastic material in zones of increased stress. Ropes and belts operate 

under cyclic loads. Each cyclic load is accompanied by accumulation 

of residual strain. Rubber shell between cables, due to its much lower 

tensile strength than that of cables, practically is not loaded until the 

moment of cable breakage. There are no residual shear deformations 

in it. 

Consideration of Cable Breakage on Stress-Strain State of 

Composite Flat Rubber-Cable Rope 

A change in a stress-strain state of a belt (rope) as a result of ca-

ble breakage leads to occurrence of shear in elastic shell material 

located between individual cables and accumulation of residual 

strain. Larger absolute values of total deformations that occur in rub-
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ber after a cable breaks lead to larger absolute values of residual 

strain. According to graphical dependencies shown in Figure 2, local 

changes in a design of composite flat rubber-cable rope (belt) lead to 

local changes in their stress-strain state. Investigate the local influ-

ence of changes in properties of an elastic material that interacts with 

a broken cable. 

Construction of Model of Rubber-Cable Tractive Element with 

a Broken Structure and Nonlinear Deformation-Dependent Rubber 

Shear Modulus 
Determining a stress-strain state considering the specified charac-

ter of deformation changes and considering the nonlinear dependency 

of shear displacements on rubber shear stresses is a complex mathe-

matical problem. Let's simplify it. Assume that the dependency of 

rubber shear stresses on its deformations is piecewise linear and con-

sists of two parts. As in the studies mentioned above, we assume that 

the cables deform like rods. Rubber is subjected only to shear stress. 

The rope is infinitely long. It has M cables and is loaded with a tensile 

force P. The cable numbered j has a continuity breakage. The cross-

section with the breakage is at a considerable distance from the rope 

edges. Rubber shear modulus of layers adjacent to the damaged cable 

at lengths l0 is different from the corresponding rubber shear modulus 

of the remaining layers. The linear size l0 is much smaller than the 

rope length, on which the stress state is changed because of a cable 

breaking. Direct the coordinate axis along the rope. Its origin (x = 0) 

is located at the point where the cable breaks. Since the cross-section 

(x = 0) is a cross-section of symmetry, the displacements of cables are 

symmetrical. At the same time, the cross-sections of all cables except 

the ends of the broken cable do not move. A gap is formed between 

the ends of the damaged cable. Let's denote the displacement of the 

end of the damaged cable U0. 
Let's single out a part of length l0(0≤l0). Consider it the first one. 

Consider the part for which (x>l0) the second part. The first part of the 

rope is divided into three stripes with an unchanged number of cables 

in each. Include stripes that do not have a broken cable into the struc-

ture of the two extreme stripes. Give them numbers one and three. 

The rope part with the broken cable and the cables adjacent to it will 

be included in the structure of the second stripe (Fig. 3). 
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Fig. 3. Rope part with a broken cable 

 

Consider the specified stripes as separate belts. A characteristic 

feature of such rope stripes is that the properties of elastic material 

between the rope stripes do not change. Shear modulus of rubber in 

layers between cables is not variable in our case. This allows using 

the conditions of their equilibrium and the form of solutions for 

stripes [26], considering the number of cables in stripes and proper-

ties of elastic shell. Let's make expressions that allow determining 

the internal forces in cables and their displacements. Write down the 

expressions for the extreme stripes in similar forms. In the expres-

sions, we will use additional indices to assign the parameters to one 

or another rope stripe. Take into account that cross-sections of cables 

of the extreme stripes do not move when (x = 0). 

Assumed Forms of Solution 

For a rope stripe with cable numbers (1≤i≤j-1) 

( )( )
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1 1, 1,

e e
,
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m mx x
j m
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A
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  + ×   = + 
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where i is cable number in the first stripe; 

( )
0

1, 1,
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h d E F
β m= −

−
. 

For the second rope stripe with cable numbers ( )1 1j i j− ≤ ≤ +  
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−
 k is coeffi-

cient, which considers the difference in shear modulus of rubber for 

the second stripe. 

For a rope stripe with cable numbers ( )1j i M+ ≤ <  
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These solutions correspond to the conditions of influence absence 

of external factors on extreme cables in stripes on the interval 

(0≤x≤l0). The cables adjacent to the broken one are included in two 

stripes – the extreme one and non-extreme one. In the extreme 

stripes, there are no disturbances in cables adjacent to the broken 

one, in accordance with solutions of (9), (10) and (13), (14). They are 
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loaded with only evenly distributed forces. Cables in the cross-

section x = 0 are immovably fixed. In a general solution, based on 

the principle of superposition, we add their displacements as cables, 

which are part of the middle stripe, to displacements of these cables 

without considering the force of their external load. 

The end of the middle cable in the middle stripe is displaced by 

an unknown amount U0 under the action of an external force. Let's 

write the above in a form of a boundary condition for the cross-

section х=0 

2, 0
0, ,

1, .
i

i j
u U

i j

≠
=  =

   (15) 

According to (15), the law of cable displacements corresponds to 

the product of displacement of a middle cable and the Dirac func-

tion δ. Let's take the Dirac function in a form of a Fourier series on a 

given segment of cable numbers. From expression (12), we have the 

following 
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From where 

( ) ( )2 0 2, 2
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From the condition that a load on the broken cable in the cross-

section of breakage is equal to zero from expression (11) we have 
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Accordingly, expression (17) takes the form 

( )2 2
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m j m j
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P
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E F
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β m
 (19) 

Expressions of forces (11) and displacements (12) considering the 

general numeration of cables in the cross-section of a rope take the 

following forms 
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Using (9), (10), (13), (14), (20), (21), we write down the values of 

forces and displacements as single functions on the finite axis of ca-

ble numbers 

( ) ( )( )
1

1

2
cos 0.5 ,

M

i n n
n

E F
p x i P

M

−

=
= − +∑ r m   (22) 

where 
π

;
1

n
n

M
m =

−  

( )
( )( ) ( )( )

( )
( )( ) ( )( )

1, 1,

2, 2,

2,

1 2 1,

1 1 1,

2

2

2,
1 2,

2,

e e

cos 0.5 cos 0.5

e 2e

e

cos 1.5

cos 0.5 cos 2.5

m m

m m

m

x x
j j m m

n
m m n

x x
m j

x

m
m m

m n

A
x

A

P

E F

j

β β

c

β β

β

c

β
r

m c m c

β
m

m c m c

−− −

= =

−
+ −

−

= =

  + ×   = + 
 × − − 

   − ×      ×  
+ +  × −

    
 × − + − 

∑ ∑

∑
3

1

∑



 553 

( )( ) ( )( )

3, 3,1 1 2 3,

1 1 3,

e e
.

cos 0.5 cos 0.5

m mx x
M j M j m m

m m n

A

j

β β

c

β

m c m c

−− − − − +

= =

  + ×   +  
 × − + − 

∑ ∑

 

( ) ( )( )
1

2
cos 0.5 ,

M

i n n
n

P x
u x i

M E F=
= − +∑υ m     (23) 

where 

( )
( )( ) ( )( )

( )
( )( ) ( )( )

1, 1,

2, 2,

2,

1 2

1 1 1,

2

3 2

1 1 2, 2,

2,

e e

cos 0.5 cos 0.5

e e

e

cos 1.5

cos 0.5 cos 2.5

m m

m m

m

x x
j j m

n
m m n

x x
m j

x

m m m

m n

m

A
x

A

P

E F

j

A

β β

c

β β

β

c

υ
m c m c

β m

m c m c

−− −

= =

−
+ −

−

= =

  − ×   = + 
 × − − 

   + +      ×  
+ +  +

    
 × − + − 

+

∑ ∑

∑ ∑

( )( ) ( )( )

3, 3,1 1 2

1 1 3,

e e
.

cos 0.5 cos 0.5

m mx x
M j M j

m m n j

β β

c m c m c

−− − − − +

= =

  − ×    
 × − + − 

∑ ∑

 

Expressions (22), (23) are obtained for the first part of the rope 

for (0≤x≤l0). In cross-section x=l0 the considered part of the rope in-

teracts with its second part. Write expressions of forces (p0,i) and 

displacements (u0,i) for the second part in the forms [26]. At the same 

time, we consider that an infinite increase in the value of x-

coordinate cannot lead to an infinite increase in the loading forces of 

cables and their displacements 

( )( )
*1

*
0, 0,

1

e cos 0.5 ,n
M

x
i n n n

n

p E F B i P
β β m

−
−

=
= − − +∑  (24) 
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−
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where 
( )

02
[1 cos( )].n n

G b

h d E F
= −

−
β m  

At the same time, in cross-section x=l0 the conditions of joint de-

formation of rope parts must be fulfilled 

0, ,i ip p=
   (26) 

0, .i iu u=    (27) 

From expressions (22), (23) and conditions (26), (27), we have 

equalities 
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Subtract (29) from (28). We get a system of N – 1 equations 
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 (30) 

The solution of obtained system of equations (30) allows deter-

mining the unknown constants and internal loading forces of cables, 

and their displacements. The known displacements make it possible 

to determine tangential stresses in material of the elastic shell located 

between the cables, which are directly proportional to the tangent of 

its shear angle 

( ) ( )1tan , 1 .i i
i

u u
i M

h
γ +−

= ≤ <        (31) 

Results and Discussion 

With the use of obtained dependencies, stress-strain state indica-

tors are determined for a rope type RCR-3150 consisting of six ca-

bles. The sixth of them is broken. The area length l0 is assumed equal 

to 0.1 m. Coefficient of change of shear modulus is 0.5. The results 

of calculations are given below. Figure 4 shows the dependency of a 

ratio of internal loads in cables to the average load (coefficients of 

uneven distribution of forces among the cables) along the x-axis. 

Let's pay attention to the fact that x = 10 cm corresponds to the 

boundary of rope parts. Presence of a boundary that divides the rope 

into parts with different values of shear modulus practically does not 

affect distribution of forces among the cables. The loads on the bro-

ken cable increase as the x-coordinate increases from zero. Cable 

adjacent to the broken one is loaded more than the other cables. Its 

maximum internal load – the coefficient of uneven distribution of 

forces occurs in the cross-section of cable breakage. This value 

reaches 1.53. The value of coefficients of unevenness decreases with 

a cable distance from the one adjacent to the broken one and with 

distance from the cross-section of breakage. We compare the values 
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of force concentration coefficients for cases of linear and assumed 

nonlinear dependency of shear modulus on deformations. The analy-

sis of results shows that an increase in the area of action of the re-

duced shear modulus leads to an increase in the maximum value of 

coefficient of uneven distribution of forces among cables. Therefore, 

when rope part length is 100 mm, the excess of the force concentra-

tion coefficient reaches 15 %. For a rope part length of 500 mm it 

reaches 5 %. For the infinite growth of the area of lower rigidity of 

rubber layers connecting the damaged cable with its adjacent cables, 

the coefficient of uneven distribution of forces infinitely approaches 

the corresponding coefficient obtained without considering the nonlin-

ear law of dependency of shear modulus on the mutual shear of cables.  

 
Fig. 4. Dependency of coefficients of uneven distribution of forces among cables 

with numbers i along x-axis 

 

Butt joints have cross-sections, in which the number of cables 

changes, just as it changes in a rope with a broken cable. Such a 

change in the number of cables leads to a mutual displacement of 

cables in a rope cross-section. The cable with a breakage moves the 

most relatively to the adjacent ones. This is observed both in butt 

joints and in a rope with a broken cable. Accordingly, the obtained 

results can be extended to butt joints. Considering the nonlinearity of 

rubber shear deformations is expedient because the lengths of butt 

joint steps are smaller than the sizes of areas of stress disturbance 

from local change in the butt joint design. 
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The ratio between displacements of cables numbered i and a dis-

placement of the broken cable in the cross-section of its breakage are 

shown in the Fig. 5. 

The displacements of cables shown in Figure 5 in the cross-

section x=0 correspond to the assumed form of displacements. As the 

distance from the cross-section of cable breakage increases, the char-

acter of curvature of the rope cross-sections changes - the amount of 

curvature decreases. The established distribution of displacements 

made it possible to find distributions of the tangents of shear angles 

of elastic material between cables. Figure 6 shows the tangents of 

shear angles of elastic shell between cables with numbers i along the 

x-axis, relative to its average value. 

 
Fig. 5. Dependency of a product of rigidity and displacements of cables with num-

bers i along x-axis 

 
Fig. 6. Dependency of tangents of shear angles of elastic shell between cables 

with numbers j along x-axis relative to its average value 



 558 

The shear of cables occurred practically only between the broken 

cable and the one adjacent to it. At the same time, rigidity of rubber 

between the specified cables in a rope part (0≤x≤10 mm) is lower 

than the rigidity of other layers. The maximum mutual shear does not 

change significantly on the area  (0≤x≤l0)  (Fig. 7). 

 
Fig. 7. Dependency of the larger tangents of shear angles of elastic shell between 

cables along x-axis related to its average value in a rope 

 

Fig. 7 shows a slight deviation of tangents of shear angles of elas-

tic shell from the average value. 

In practice, ropes of various designs are used, including with a 

different number of cables. Fig. 8 shows the dependency of distribu-

tion of force distribution coefficients among cables in ropes with dif-

ferent numbers of cables. 

 
Fig. 8. Coefficients of force distribution among cables in ropes with a different 

number of cables; 1 - for a rope of five cables, 2 - for a rope of seven cables 
 

The figure shows that an increase in a number of cables in a rope 

does not significantly affect the maximum values of internal loading 

forces of cables. The analysis of expressions (27), (28) shows that 

the increase in the number of cables in a rope over ten practically 
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does not affect the value of maximum stresses in a case of breakage 

of the extreme cable. In case of breakage of the middle cable, the 

maximum force in adjacent cables practically does not depend on 

their number when there are more than sixteen of them. 

Conclusion 

By analytically solving a model of a rubber-cable tractive element 

with a broken structure and nonlinear deformation-dependent rubber 

shear modulus, the dependencies of changes in a stress state of a rubber-

cable tractive element with a broken structure in a form of a cable 

breakage are established. 

In a process of solving the model, an algorithm for determining a 

stress state of a rubber-cable tractive element with a broken structure is 

formulated. A mechanism for changing a stress state of a rubber-cable 

rope is established, considering the nonlinear deformation-dependent 

shear modulus of rubber. 

It is established that an increase in area of action of the reduced shear 

modulus leads to an increase in the maximum value of a coefficient of 

uneven distribution of forces between the cables. With infinite growth of 

area of lower rigidity of rubber layers connecting the broken cable with 

the adjacent cables, the coefficient of uneven distribution of forces infi-

nitely approaches the corresponding coefficient determined without 

considering the nonlinear law of the dependency of shear modulus on 

deformations. 

The obtained results can be extended to butt joints. Considering the 

non-linearity of rubber shear deformations is expedient because lengths 

of butt joint steps are smaller than sizes of areas of stress disturbance 

from a local change in butt joint design. 

Considering the nonlinear deformation-dependent shear modulus of 

rubber provides an opportunity to specify the prediction of a rope stress 

state with a continuity breakage of cables, increase safety and operation-

al reliability of rubber-cable tractive elements. 

The results are obtained using well-known methods of theory of 

composite materials of a rubber-cable rope model and its solution using 

analytical methods. The model considers the nonlinear law of rubber 

deformation. This allows considering the obtained results as sufficiently 

reliable and as such that they clarify the idea of a mechanism of defor-

mation of rubber-cable ropes and belts. 
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