МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ
НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ВОДНОГО ГОСПОДАРСТВА ТА
ПРИРОДОКОРИСТУВАННЯ

Інститут агроекології та землеустрою
Кафедра геодезії та картографії

05-04-19

МЕТОДИЧНІ ВКАЗІВКИ
dо виконання самостійних та лабораторних робіт з дисципліни
«МЕРЕЖЕВИЙ АНАЛІЗ В ГІС»
студентами напряму підготовки
6.080101 «Геодезія, картографія та землеустрій»
Частина 2.
Пошук оптимальних маршрутів та обчислення областей обслуговування

Рекомендовано
методичною комісією напряму підготовки
6.080101 «Геодезія, картографія та землеустрій».
Протокол № 6 від 16 квітня 2015р.

РІВНЕ – 2015

Упорядник: Т.І. Дець, кандидат технічних наук, старший викладач кафедри геодезії та картографії.
ЗМІСТ

Вступ...3
1. Пошук оптимального маршруту з використанням набору мережевих даних...4
2. Пошук найближчої пожежної частини та оптимального маршруту від неї до місця пригоди..12
3. Обчислення областей обслуговування та створення матриці Джерело-Призначення ..20

Розподіл балів, що присвоюються студентам за виконання лабораторних робіт..40

Перелік рекомендованої літератури.....................................40

ВСТУП

В умовах сьогодення проблема розв’язання задачі пошуку оптимальних шляхів є надзвичайно актуальною, особливо враховуючи постійну зайнятість населення та бажання ефективно використовувати свій час. Для визначення найбільш оптимального маршруту враховуються довжина шляху та його економічність.

На пошук та розробку оптимального маршруту впливає багато факторів: складність транспортної мережі, дорожні трафіки, характеристики транспортних засобів, кількість обмежень, час проходження мережі і т. ін.. Без використання спеціалізованих методів та програмних засобів визначення оптимального маршруту неможливо.

В даних методичних вказівках нами буде розглянуто три приклади пошуку оптимальних маршрутів із врахуванням різних умов у програмному середовищі ArcGIS 9.3 (модуль Network Analyst) та викладено черговість дій виконання поставлених завдань.
1. Пошук оптимального маршруту з використанням набору мережевих даних

Мета роботи – навчити студентів шукати оптимальний маршрут на основі набору мережевих даних

Завдання
Знайти найкоротший (найшвидший) маршрут серед вказаних у певному порядку зупинок

Порядок виконання роботи
1. Перед початком роботи необхідно запустити ArcMap із меню Пуск та в наступному діалоговому вікні вказати, що будемо працювати з існуючими картами. Далі потрібно перейти до папки, де розташовано файл Exercise04.mxd та відкрити його в ArcMap.
2. Слід переконатися (рис. 1), що модуль Network Analyst підключений (на панелі Налаштування - Додаткові модулі).

Рисунок 1 – Діалогове вікно Додаткових модулів

Якщо панель інструментів Network Analyst іще не відображається (рис. 2), необхідно її додати (меню Налаштування > Панелі інструментів > Network Analyst).

Рисунок 2 – Панель інструментів Network Analyst
За допомогою кнопки (Вікно Network Analyst) – включити вікно Network Analyst (рис. 3), яке в любий момент можна ввімкнути та вимкнути.

Рисунок 3 – Вікно Network Analyst

3. Для створення шару аналізу Маршрут на панелі інструментів Network Analyst клацніть на пункті Network Analyst (рис. 4) та в падаючому меню виберіть Новий маршрут (New Route).

Рисунок 4 – Створення нового шару аналізу

Шар мережевого аналізу Маршрут буде додано в вікна Network Analyst та таблицю змісту ArcMap (рис. 5).
Класи мережевого аналізу: Зупинки (Stops), Маршрути (Routes), Бар’єри (Point, Line, Polygon Barriers) – пусті.

4. Наступним кроком є додавання зупинок маршруту (місцеположень на карті).
У вікні Network Analyst клацніть на Зупинки(0) (Stops (0)) – це означає, що вони знаходяться в активному класі мережевого аналізу.
Рисунок 5 – Вікно Network Analyst та таблиця змісту ArcMap

На панелі інструментів Network Analyst кладуть на кнопці – Інструмент створення мережевого розташування, та з його допомогою створити три об'єкти мережевого аналізу шляхом натискання ЛКМ у будь-якому місці вуличної мережі на карті. Нові об'єкти мережевого аналізу автоматично додаються в активний клас мережевого аналізу (рис. 6), у даному випадку в Зупинки (3) (Stops (3)).

Рисунок 6 – Додавання об'єктів мережевого аналізу

Перша точка розглядається як початок, а остання – як пункт призначення. Послідовність зупинок може бути змінена шляхом її вибірки ЛКМ у вікні Network Analyst та перенесенням в іншу позицію списоку. Зупинка залишається вибраною доти, доки не буде додана або вибрана інша зупинка, або поки не відмінено (знято) вибірку.
Якщо зупинка не розташована в мережі (знаходиться далі, ніж на 5 км від найближчого сегменту вулиці), то вона помічається.
Щоб перемістити зупинку, слід на панелі інструментів Network Analyst натиснути кнопку – Вибір/Пересування об’єкту мережевого розташування, помітити необхідну зупинку в вікні Network Analyst, класнути на ній на карті та перемістити у нове місце.

5. Налаштування параметрів для пошуку оптимального маршруту.
У налаштуваннях необхідно вказати, що: маршрут буде вираховуватися на основі часу руху (хвилини) та потрібно дотримуватися обмежень одностороннього руху.
Для встановлення параметрів аналізу натиснути ЛКМ на кнопку Властивості шару аналізу (Analysis Layer Properties) у вікні Network Analyst.
Відкриється діалогове вікно, де слід перейти на закладку Налаштування аналізу (Analysis Settings) (рис. 7).

![Діалогове вікно Властивості шару](image.png)

Рисунок 7 – Діалогове вікно Властивості шару
В налаштуваннях шару аналізу Маршрут необхідно вказати, що:
- Імпеданс визначено як Час руху в хвилинах (Minutes);
- Розвороти у з’єднаннях (Allow U-Turns) – Дозволено скрізь (Everywhere);
- Тип вихідної геометрії (Output Shape Type) – як Істинна форма (True Shape);
- слід ігнорувати некоректно задані місця розташування (Ignore Invalid Locations);
- у розділі Обмеження відмітити Oneway;
- у розділі Шляховий лист (Directions) параметр Одиниці вимірювання (Distance Units) має значення Милі, відмічене опцією Використовувати атрибут часу (Use Time Attribute), Атрибут часу має значення Час руху в хвилинах (Minutes).

Натиснути Ок.

Закладка Налаштування аналізу повинна мати вигляд, як на рисунку 7, проте деякі властивості можуть бути іншими, наприклад, імпеданс.

6. Обчислення найкращого маршруту відбувається натисканням на панелі інструментів Network Analyst кнопки – Розрахункок (Solve).

Об’єкт мережевого аналізу Маршрут з’явиться у вікнах карти та Network Analyst під класом Маршрути (Routes) (рис. 8).

Рисунок 8 – Пошук оптимального маршруту

На панелі інструментів Network Analyst кладнути кнопку – Шляховий лист (або Вікно напрямків). Відкривається діалогове вікно Напрямки (Directions). При натисканні посилання із назвою
Карта (Map), на крайньому правому стовпці вікна, відобразиться карта-врізка частини маршруту (рис. 9).

Рисунок 9 – Діalogове вікно напрямків маршруту

7. Якщо на прорахованому маршруті сталася деяка подія (наприклад, автомобільна аварія, впало дерево), то внести зміни до нього і знайти новий, можна шляхом додавання бар’єру на цей маршрут. Для цього в меню Вікна (Windows) кладнути на Збільшувач (Magnifier). Перемістити відкрите діalogове вікно Збільшувача на ту частину маршруту, куди потрібно додати бар’єр (рис. 10).

Рисунок 10 – Діalogове вікно Збільшувача
У вікні Network Analyst необхідно зробити активним клас Бар’єри (Barriers (0)), клацнути на кнопці 🔄 – Інструмент створення мережевого розташування, та з його допомогою створити об’єкт мережевого аналізу Бар’єр (рис. 11), шляхом натискання ЛКМ у потрібному місці вуличної мережі на карті.

![Diagram](image1.png)

Рисунок 11 – Додавання бар’єру на маршрут

Для розрахунку нового маршруту клацнути на кнопці 🔄 – Розрахунок (Solve) на панелі інструментів Network Analyst. Альтернативний маршрут розраховано для обходу бар’єру (рис. 12).

![Diagram](image2.png)

Рисунок 12 – Новий розрахований маршрут

Закрити вікно Збільшувача.
8. Якщо необхідно зберегти даний шар аналізу, тоді в вікні Network Analyst (рис. 13) кланути ПКМ на Маршрути (Routes (1)) та вибрати команду з контекстного меню Експорт даних (Export Data).

Рисунок 13 – Збереження шару аналізу Маршруту

У діалоговому вікні, що з’явиться, в текстовому полі Вихідний клас об’єктів (Output feature class) вказати шлях та місце для збереження результатів, наприклад, C:\ArcGIS\ArcTutor\Network Analyst\Tutorial\SanFrancisco.gdb\Exercise4_Route.
Натиснути OK.

Питання для самостійної роботи
1) Що таке шари мережевого аналізу?
2) Що таке мережевий шар та набір мережевих даних?
3) Шар мережевого аналізу «Маршрут», його суть.
4) Поняття «кращий маршрут».
5) Що таке імпеданс?
6) Що таке ієрархія? Переваги застосування ієрархічного мережевого аналізу.
7) Що таке бар’єр? Типи геометрії бар’єрів.
2. Пошук найближчої пожежної частини та оптимального маршруту від неї до місця пригоди

Мета роботи – навчити студентів створити, налаштувати і провести аналіз найближчого пункту обслуговування

Завдання

Знайти чотири пожежні частини, які можуть найшвидше надати допомогу за вказаною адресою у разі виникнення пожежі. Необхідно також створити маршрут і напрямки руху, яких повинні дотримуватися пожежники

Порядок виконання роботи

1. Перед початком роботи необхідно запустити ArcMap з меню **Пуск** та в наступному діалоговому вікні вказати, що будемо працювати з існуючими картами. Далі потрібно перейти до папки, де розташовано файл **Exercise05.mxd** та відкрити його в ArcMap.

2. Слід переконатися, що модуль Network Analyst, його панель інструментів та робоче вікно підключено (рис. 1 - 3).

3. Для створення шару аналізу Найближчий пункт обслуговування на панелі інструментів Network Analyst клацнути на пункти Network Analyst (рис. 4) та в падаючому меню вибрати **Новий найближчий пункт обслуговування (New Closest Facilit)**.

Шар аналізу Найближчий пункт обслуговування буде додано в вікна Network Analyst та таблицю змісту ArcMap (рис. 14).

Рисунок 14 – Відображення шару аналізу Найближчий пункт обслуговування у вікні Network Analyst та таблиці змісту ArcMap
Класифікація мережевого аналізу у вікні Network Analyst: Пункти обслуговування (Facilities), Події (Incidents), Маршрути (Routes), Бар’єри (Barriers) – порожні.

4. Далі необхідно завантажити пункти обслуговування із шару точкових просторових об’єктів, які представляють пожежні частини.

У вікні Network Analyst клікнути правою кнопкою миші (рис. 15) на Об’єкти (Facilities (0)) > Завантажити розташування (Load Locations). Відкриється відповідне діалогове вікно (рис. 16). В списку Завантажити з (Load From) вибрати Пожежні частини (FireStations).

Натисніть OK.

Рисунок 15 – Завантаження розташувань

Рисунок 16 – Діалогове вікно завантаження розташувань

Сорок три пожежні частини буде відображено на карті, як пункти обслуговування, і приведено в список вікна Network Analyst (рис. 17).
Рисунок 17 – Діалогове вікно завантаження розташувань

5. Наступним кроком є додавання інциденту шляхом геокодування адреси, отриманої з екстреного виклику.

У вікні Network Analyst клацнути правою кнопкою миші Інциденти (Incidents (0)) і вибрати команду Знайти адресу (Find Address). Відкриється діалогове вікно Знайти (Find). Переконайтеся, що вибрано SanFranciscoStreet в список Вибір адреси локатора (Choose an adress locator) (рис. 18).

Рисунок 18 – Діалогове вікно завантаження розташувань
У текстовому вікні Вулиця або перетин (Street or Intersection) ввести 1202 Twin Peaks Blvd.

Клацнути Знайти.

Одне місце розташування знайдено з даною адресою і вказано в списку у вигляді рядка в таблиці внизу діалогового вікна Знайти (Find). Клацніть правою кнопкою миші на цьому рядку і виберіть команду Додати як об'єкт мережевого аналізу (Add as Network Location) (рис. 19). Вказану адресу буде додано в якості інциденту і відображено на карті та у вікні Network Analyst.

Рисунок 19 – Діалогове вікно завантаження адреси інциденту

Закрити діалогове вікно Знайти.
6. Далі потрібно задати параметри для аналізу Найближчого пункту обслуговування.

Натисніть кнопку Властивості шару аналізу (Analysis Layer Properties) у вікні Network Analyst. Відкриється діалогове вікно Властивості шару (Layer Properties), де слід перейти на закладку Налаштування аналізу (Analysis Settings) (рис. 20).

![Свойства слоя](image)

Рисунок 20– Налаштування властивостей шару аналізу

В налаштуваннях шару аналізу Найближчий пункт обслуговування необхідно:
- **Імпеданс** визначити як Час руху в хвилинах (Minutes);
- у текстове поле **Гранчні значення за замовчуванням** (Default Cutoff Value) ввести число 3: ArcGIS буде проводити пошук пожежних частин, розташованих в трьох хвилинах їзди до пожежі на бульварі Твін Пікс (Twin Peaks Boulevard). Частини, розташовані за межами цього проміжку часу, ігноруються;
- задати в полі Шукарі об'єкти (Facilities to Find) число 4: ArcGIS буде проводити пошук максимум чотирьох пожежних частин, розташованих поруч із місцем пожежі. Однак трихвілинне обмеження все ще застосовується; тому, якщо тільки три пожежних частини будуть перебувати в трьох хвилинах їзди, то четверта пожежна частина знайдена не буде;
- вибрати Пункт обслуговування до інциденту (Facility to Incident) для напрямку Слідувати від (Travel From): результати пошуку залежать від розташування пожежних частин, завантажених у вигляді пунктів обслуговування. Це імітує пересування пожежних машин від розташування пожежних частин до місця пожежі (інциденту);
- Розвороти у з’єднаннях (Allow U-TURNS) – Дозволено скрізь (Everywhere);
- Тип вихідної геометрії (Output Shape Type) – як Істинна форма (True Shape);
 - зняти позначку Використовувати ієрархію (Use Hierarchy);
 - відмітити Ігнорувати некоректно задані місця розташування (Ignore Invalid Locations);
 - в рамці Обмеження відмітити Oneway: також у версії ArcGIS 10.0 зняти позначку Обмежені повороти (RestrictedTurns): пожежні машини мають право не дотримуватися правил дорожнього руху в разі екстреного виїзду;
- в розділі Шляховий лист (Directions) параметр Одиниці вимірювання (Distance Units) вказати значення Мілі, відмітити опцію Використовувати атрибут часу (Use Time Attribute), Атрибут часу має значення Час руху в хвилинах (Minutes).

Натиснути Ок.

7. Наступним кроком є розрахунок (ідентифікація) найближчого пункту обслуговування.

Клацнути ЛКМ на кнопці Розрахунок (Solve) на панелі інструментів Network Analyst.

Маршрути (рис. 21) з’являться на карті та у вікні ArcGIS Network Analyst під класом Маршрути (Routes).

Зверніть увагу, що ми налаштували аналіз, щоб знайти чотири пункти обслуговування в межах 3-хвилинного граничного значення; однак тільки три пункти обслуговування знаходяться у межах даного значення.
Рисунок 21 – Розрахунок найближчого пункту обслуговування

Клацніть на кнопці – Вікно напрямків (Directions Window) на панелі інструментів Network Analyst. Відкриється діалогове вікно Напрями (Directions) (рис. 22).

Рисунок 22 – Діалогове вікно Напрями (Directions)
Напрямки руху від кожної пожежної частини наводяться у списку в даному вікні.
Задачу розрахунку найближчого пункту обслуговування можна ускладнити, додавши іще один інцидент або бар'єр на маршрут.
Якщо ви не бажаєте продовжувати роботу з іншими вправами, закрийте додаток ArcMap. Натисніть Ні (No), щоб не зберігати зміни (рис. 23).

Рисунок 23 – Діалогове вікно Напрями (Directions)

Питання для самостійної роботи
1) Назвати типи шарів мережевого аналізу.
2) Основні властивості шарів мережевого аналізу.
3) Шар мережевого аналізу «Найближчий пункт обслуговування», його класи.
4) Приклади задач пошуку найближчого пункту обслуговування.
5) Назвати параметри шару мережевого аналізу «Найближчий пункт обслуговування».
6) Що таке «Мережеве місце розташування»?
7) Назвати основні типи та властивості бар’єрів.
8) Що таке «Класи мережевого аналізу»?
9) Використання атрибутів «Поворот» та «Розворот» в шарах мережевого аналізу.
3. Обчислення областей обслуговування та створення матриці Джерело-Призначення

Мета роботи – навчити студентів створювати полігони області обслуговування, налаштувати і провести їх аналіз, а також створити матрицю Джерело-Призначення

Завдання

Створити серію полігонів, що представляють відстань, яку може бути досягнуто з пункту обслуговування протягом певного часу. Дані полігони відомі як полігони області обслуговування. Необхідно також обчислити трьох-, п’яти- і десятихвилинні зони обслуговування для шести товарних складів у Парижі та виразити кількість магазинів у кожній із цих областей.

Визначити склад, розташування якого має бути змінено, для кращого обслуговування магазину. Додатково слід створити матрицю Джерело-Призначення для доставки товарів зі складу в усі магазини в межах 10-хвилинної доступності.

Порядок виконання роботи

1. Перед початком роботи необхідно запустити ArcMap із меню Пуск та в наступному діалоговому вікні вказати, що будемо працювати з існуючими картами. Далі потрібно перейти до папки, де розташовано файл Exercise06.mxd та відкрити його в ArcMap.
2. Слід переконатися, що модуль Network Analyst, його панель інструментів та робоче вікно підключени (рис. 1 - 3).
3. Для створення шару аналізу Найближчий пункт обслуговування на панелі інструментів Network Analyst кладнути на пункті Network Analyst (рис. 4) та в падаючому меню вибрати Нова область обслуговування (New Service Area).

Шар аналізу області обслуговування буде додано в вікна Network Analyst та таблицю змісту ArcMap (рис. 24).

Класи мережевого аналізу: Пункти обслуговування (Facilities), Полігони (Polygons), Лінії (Lines), Бар’єри (Point, Line, Polygon Barriers) – пусті.
4. Далі потрібно додати товарні склади як пункти обслуговування, для яких будуть згенеровані полігони області обслуговування.
Рисунок 24 – Відображення шару аналізу Область обслуговування у вікні Network Analyst та таблиці змісту ArcMap

Є два способи додавання складів, як пункти обслуговування:
1) натиснути Ctrl при перенесенні шару об'єктів Склади (Warehouses) з вікна Таблиця вмісту (Table of Contents) і відпустити його над класом Пункти обслуговування (Facilities) у вікні Network Analyst;

2) у вікні Network Analyst зробити активним клас аналізу Пункти обслуговування (Facilities (0)), клацнути на ньому ПКМ (рис. 15) і з контекстного меню вибрати команду Завантажити розташування (Load Locations). Відкриється відповідне діалогове вікно (рис. 25).

У списку Завантажити з (Load From) вибрати Склади (Warehouses). Натиснути OK.

Рисунок 25 – Вікно завантаження пунктів обслуговування (склади)
Шість складів будуть завантажені в якості пунктів обслуговування і з'являться на карті та у вікні Network Analyst (у даному вікні натисніть на знак плюс (+) поруч із Пункти обслуговування (склади) (6) (Facilities (6)), щоб побачити список пунктів обслуговування.

5. Встановлення параметрів для аналізу.
На наступному етапі необхідно вказати, що область обслуговування буде обравоваю виходячи з часу пересування автомобіля у хвилинах.
Буде виконано розрахунок трьох полігонів області обслуговування для кожного складу (пункту обслуговування): один для 3 хвилин, один для 5 хвилин і останній для 10 хвилин. Слід також вказати, що:
- напрямок пересування відбуватиметься від пункту обслуговування, а не до нього;
- розвороти допустимі;
- необхідно дотримуватись обмежень на вулицях із одностороннім рухом.

Натиснути кнопку Властивості шару аналізу Область обслуговування (Analysis Layer Properties) у вікні Network Analyst.

Відкриється діалогове вікно Властивості шару (Layer Properties).
Перейдіть на закладку Налаштування аналізу (Analysis Settings) та переконайтесь, що:
- Імпеданс (Impedance) заданий як DriveTime (у хвилинах);
- у текстовому вікні Граничні значення за замовчуванням (Default Breaks) введено «3 5 10»;
- у розділі Напрямок (Direction) вказано Від пункту обслуговування (Away From Facility);
- у полі Розвороти (Allow U-Turns) вибрано Nowhere;
- стоїть позначка Ігнорувати некоректні місця розташування (Ignore Invalid Locations);
- у списку Обмеження (Restrictions) відмічено Односторонній рух (Oneway).
Закладка Налаштування аналізу (Analysis Settings) повинна виглядати, як на рисунку 26.

Рисунок 26 – Діалогове вікно Налаштування аналізу

У цьому ж вікні потрібно перейти на закладку Створення полігонів (Polygon Generation) та переконатися, що вибрано пункт Створення полігонів (Generate Polygons).

Для установки Тип полігону (Polygon Type) клацнути на Генералізований (Generalized): деталізовані полігони більш точні, але для їх генерування потрібно більше часу. Також зняти позначку з пункту Скоротити полігон (Trim Polygon): цей процес постійної кількості обрізає зовнішні межі полігону, на що потребує додатковий час.

Далі клацніть на Перекриття (Overlapping) для переходу до вікна Параметри для декількох пунктів обслуговування (Multiple Facilities Options): це створює окремі полігони для кожного пункту.
обслуговування. Полігон одного пункту обслуговування може бути перекритий полігоном іншого, найближчого пункту обслуговування.

Клацнути на Кільця (Rings) для типу Накладення (Overlap): це виключає області з меншими граничними значеннями з полігонів з великими кордонами.

Закладка Створення полігонів (Polygon Generation) повинна виглядати, як на рисунку 27.

Рисунок 27 – Закладка Створення полігонів

Натиснути Застосувати (Apply), щоб зберегти налаштування.
Далі слід перейти на закладку Створення ліній (Line Generation) і знати позначку Створити лінії (Generate Lines) > Ok.

6. Клацнути на кнопці – Розрахунок (Solve) на панелі інструментів Network Analyst.
Полігони областей обслуговування з’являться на карті та у вікні Network Analyst. Полігони прозорі – це дозволяє побачити розташовані під ними вулиці. Перехід кольорів полігонів для пунктів
обслуговування встановлений від темного до світлого. Змінімо його на перехід від світлого до темного: тоді зовнішня та внутрішня області обслуговування будуть мати більш чіткі межі.
Для цього у таблиці змісту (Table Of Contents) клацніть ПКМ на шарі Полігони (Polygons) і виберіть Властивості (Properties). Далі слід перейти на закладку Символи (Symbology), клацнути ПКМ ім'я поля Символ (Symbol) (рис. 28), вибрати Обернуті символи (Flip Symbols).

Рисунок 28 – Вікно Властивості шару Полігони, закладка Символи

Розраховані області обслуговування представлені на рисунку 29.

Рисунок 29 – Розраховані області обслуговування
7. Для идентификации магазинов, что находятся за межами областей обслуживания и покрытия их видимости в вике Таблица змісту (Table Of Contents) кладніть (рис.30) і перемістіть Магазини (Stores) у верхню частину списку Шари (Layers).

Клацнути на пункті головного меню Вибірка (Selection)> Вибрати по розташуванню (Select By Location) (рис. 30).

Рисунок 30 – Вікна таблиці змісту ArcMap та меню Вибірка

Для вибору об’єктів із магазинів, які знаходяться всередині полігонів, необхідно створити запит у діалоговому вікні Вибір за розташуванням (Select By Location), як показано нижче на рисунку 31:
- у полі Метод вибірки (I want to) вказати Вибрати об’єкти (Select features from);
- у закладці Цільові шари (The following layer(s)) поставити мітку біля об’єктів Магазини (Stores);
- у полі Метод просторової вибірки для цільових класів об’єктів (that) вибрати Знаходяться всередині об’єктів вихідного шару (are completely within);
- Вихідний шар (the features in this layer) вказати Полігони (Polygons).

Натиснути OK.
Вибираються ті магазини, які знаходяться у межах полігонів.
Рисунок 31 – Діалогове вікно Вибір за розташуванням

Проте нам потрібно вибрати магазини, які знаходяться за межами полігонів областей обслуговування, тобто не входять у жодну з них.

Для цього у вікні Таблиця змісту ArcMap (Table Of Contents) кладнути правою кнопкою Магазини (Stores) > Вибірка (Selection) > Переключити вибірку (Switch Selection).

Тепер вибірка відображає магазини, які не містяться у жодному з полігонів областей обслуговування (рис. 32).

Рисунок 32 – Результат вибірки магазинів
Використаємо дану вибірку для визначення нового місця розташування товарного складу.

На панелі інструментів Інструменти (Tools) клацніть на кнопці – Очистити вибрані об’єкти (Clear Selected Features).

8. Переміщення найменш доступного товарного складу.

Якщо подивитися на полігони області обслуговування товарного складу № 2, то навколо нього в межах трьох-, п'яти- або десятихвилинної доступності областей обслуговування немає магазинів. Отже, необхідно перемістити цей склад, щоб краще обслуговувати магазини.

У вікні Network Analyst вибрати Товарний склад № 2 (Warehouse # 2) під Пунктами обслуговування (Facilities) (6) (рис. 33).

Клацніть на інструменті – Вибір / Переміщення мережевого положення (Select / Move Network Location) на панелі інструментів Network Analyst. Перемістити товарний склад № 2 у центр карти, як показано на рисунку 33.

Рисунок 33 – Переміщення товарного складу №2

Клацніть на кнопці – Розрахунок (Solve) на панелі інструментів Network Analyst. Нові полігони області обслуговування з’являться на карті та у вікні Network Analyst.

9. Ідентифікація полігону області обслуговування, в якій знаходяться всі магазини.

1) У вікні Таблиця змісту (Table Of Contents) клацнути правою кнопкою Магазини (Stores) > З’єднання і Зв’язки (Joins and Relates)> З’єднання (Join):

Відкриється діалогове вікно З’єднання даних (Join Data).
2) Виберіть Дані з іншого шару на основі просторового розташування (Join data from another layer based on spatial location):

3) Виберіть Полігони (Polygons) в якості шару для з'єднання:

4) Клацніть на кнопці Всередину якого вона потрапляє (it falls inside):
Таким образом, атрибуты полигону даются до всех точек, которые попадают в середину этого полигону.

5) Вкажите расташування вихідного шейп-файлу або класу просторових об’єктів для збереження результатів з’єднання і назвіть їх StoresWithPoly:

![Image](attachment:image.png)

Натисніть Ок.

ArcGIS виконує з’єднання атрибутів і додає новий шар до карти.

6) У Таблиці змісту ArcMap (Table Of Contents) кланути ПКМ на новому шарі об’єктів StoresWithPoly та відкрити таблицю атрибутів (Open Attribute Table):

![Image](attachment:image.png)

Кожен рядок у табліці містить назву магазину та полігону, до якого він входить.

Ми можемо використовувати цю таблицю, щоб виконувати інші розрахунки, наприклад, знайти число магазинів у межах від 0 до 3-х хвилин доступності області обслуговування.

Закрити таблицю атрибутів.

7) Додатково ми можемо експортувати пункти обслуговування (включаючи переміщений нами) у вигляді класів просторових об’єктів.
У вікні Network Analyst клацнути правою кнопкою миші на Об’єкти (пункти обслуговування) (Facilities) (6) і вибрати команду Експорт даних (Export Data).

Відкриється діалогове вікно Експорт даних (Export Data).
У списку Експорт (Export) вибрати Усі об’єкти (All features), Вихідне розташування і тип (шейп-файл або клас просторових об’єктів):

Для збереження класу просторових об’єктів вибрати базу геоданих Парижа: C: \ arcgis \ ArcTutor \ Network Analyst \ Tutorial \ Paris.gdb \ New_Warehouses (Нові товарні склади).

Натиснути Ok.
На запитання: «Чи бажаєте ви додати експортировані дані на карту?» відповісти «Ні».

10. Останнім пунктом нашого завдання є створення шару аналізу матриці Джерело-Призначення для доставки товарів із нового товарного складу у всі магазини.

Результати цієї матриці також можуть використовуватися для ідентифікації магазинів, які будуть обслуговуватися кожним товарним складом, розташованим в межах десятихвилинної доступності за часом пересування. Крім того, це дозволить нам знайти повний час пересування від кожного товарного складу до будь-якого з обслуговуючих магазинів.
У вікні Таблиця змісту ArcMap (Table Of Contents) зняти позначки з шару аналізу Область обслуговування (Service Area) і шару об’єкта StoresWithPoly, щоб покращити читаність карти.

На панелі інструментів Network Analyst клатнути на пункті Network Analyst (рис. 4) і вибрати шар аналізу Нова матриця Джерело-Призначення (New OD Cost Matrix).

Шар аналізу матриця Джерело-Призначення додано у вікно Network Analyst та таблицю змісту ArcMap (рис. 34). Класи мережевого аналізу: Вихідні точки (Origins), Кінцеві точки (Destinations), Лінії (Lines), Бар’єри (Barriers) – пусті.

Рисунок 34 – Відображення шару аналізу матриця Джерело-Призначення у вікні Network Analyst та таблиці змісту ArcMap

10.1 Додавання джерел (Adding Origins).

В якості джерел будемо використовувати пункти обслуговування із шару аналізу Область обслуговування (див. попередні пункти). Якщо не було потреби виконувати попередні завдання, то замість них можна використовувати шар просторових об’єктів.

У вікні Network Analyst клатнути ПКМ на Джерела (Origins (0)) і вибрати команду Завантажити розташування (Load Locations).

Відкриється діалогове вікно Завантаження розташувань (Load Locations) (рис. 35). У полі Завантажити з (Load From) клатнути у список на Області обслуговування / Пункти обслуговування.
(ServiceArea / Facilities) (якщо попередній пункт в області обслуговування не завершений, то замість пунктів обслуговування слід вибрати Товарні склади (Warehouses)).

Рисунок 35 – Вікно Завантаження розташувань: додавання джерел

Зняти позначку з Завантажити тільки вибрани рядки (Only load selected rows).

У розділі Позиція положення (Location Position) клацнути на Використовувати поля мережевих місць розташування (Use Network Location fields) (якщо ж завантажуємо товарні склади, то слід клацнути на Використовувати геометрію (Use Geometry)).

Використання полів мережевого розташування дозволяє ArcGIS застосовувати вже розташовану позицію області обслуговування для визначення їх знову в якості джерел. Цей спосіб дозволяє знайти їх місце розташування набагато швидше, ніж використання просторового пошуку.

Натиснути OK.

Шість нових об’єктів відображено у вікні Network Analyst у класі Джерела (Origins (6)) (рис. 36).
Рисунок 36 – Додавання джерел у вікні Network Analyst

10.2 Додавання призначень (Adding Destinations).
У вікні Network Analyst клатнути правою кнопкою миші на класі Призначення (Destinations (0)) > Завантажити розташування (Load Locations) (рис. 37).

Рисунок 37 – Вигляд контекстного меню вікна Network Analyst

Вибрати Магазини (Stores) у списку Завантажити з (Load From) (рис. 38). У розділі Властивості аналізу розташувань (Location Analysis Properties) для імені властивостей вказати NOM у падаючому меню Поле (Field).
 Натиснути OK.
Рисунок 38 – Вікно Завантаження розташувань: додавання призначення

У вікні Network Analyst в списку та на карті ArcMap будуть відображатися 21 призначення (рис. 39).

Рисунок 39 – Додавання призначень у вікно Network Analyst та на карту в ArcMap
10.3 Установка параметрів для аналізу

На наступному етапі необхідно вказати, що матриця Джерело-Призначення буде обраховуватися виходячи з часу пересування автомобілем. Слід встановити значення доступності за замовчуванням 10 хвилин і задати налаштування таким чином, щоб усі місця призначення знаходилися в межах цієї обмеженої зони. Також додатково вказати, що розвороти допускаються скрізь, а тип вихідної геометрії має бути прямолінійним. Так як розрахунок та виконання маршруту проводиться на дорогах, необхідно враховувати обмеження на односторонній рух. Всі некоректні місця розташування (місце розташування не знайдено) ігноруються.

Для цього натиснути кнопку Властивості шару аналізу (Analysis Layer Properties) у вікні Network Analyst та у діалоговому вікні, що відкрилося, перейти на закладку Налаштування аналізу (Analysis Settings). Переконайтесь, що (рис. 40):
- у полі Імпеданс (Impedance) задано значення DriveTime (у хвилинах);
- знято позначку Використовувати час початку (Use Start Time);
- введено 10 у текстове поле Границе значення за замовчуванням (Default Cutoff Value): таким чином, будуть створені напрямки Джерело-Призначення від кожного товарного складу до всіх магазинів, які знаходяться в межах 10 хвилинної доступності. В якості одиниць вимірювання використовуються хвилини, оскільки атрибут імпедансу заданий у хвилинах;
- у властивостях Призначення для пошуку (Destinations To Find) задано значення <Все> (<All>);
- вибрано Дозволено скрізь (Everywhere) зі спадаючого списку Розвороти (Allow U-Turns);
- у полі Тип форми на виході (Output Shape Type) встановлено значення Пряма лінія (Straight Line);
- відзначено параметр Ігнорувати некоректні місця розташування (Ignore Invalid Locations);
- відмічено Односторонній рух (Oneway) у розділі Обмеження (Restrictions).

Натиснути ОК.
Налаштування параметрів збережено.
10.4 Створення матриці Джерело-Призначення.

Клацнути на кнопці “Розрахунок” (Solve) на панелі інструментів Network Analyst. Лінії Джерело-Призначення будуть відображатися на карті та у вікні Network Analyst у класі Лінії (Lines). У даному прикладі 24 лінії (рис. 41). Це число залежить від того, куди було переміщено товарний склад № 2.

![Diagram](image-url)
10.5 Ідентифікація магазинів та товарних складів

Із розрахованої матриці Джерело-Призначення тепер можна визначити магазини, які будуть обслуговуватися кожним товарним складом.

У вікні Network Analyst клацніть правою кнопкою миші на класі об’єктів Лінії (Lines) (24) > Відкрити таблицю атрибутів (Open Attribute Table).

Відкривається таблиця Лінії (Lines) (рис. 42), яка являє собою матрицю Джерело-Призначення від кожного товарного складу до всіх магазинів у межах 10-хвилиної доступності.

Рисунок 42 – Таблиця Лінії (Lines) матриці Джерело-Призначення

Стовпець OriginID (ідентифікатор джерела) містить ідентифікатори товарних складів.

Стовпець DestinationID (ідентифікатор призначення) містить ідентифікатори магазинів. DestinationRank (ранг призначення) – це
ранг, присвоєній кожному призначенню, яке обслуговується магазином, виходячи із загального часу шляху. Наприклад, у таблиці вище зазначено, що для товарного складу № 1 ідентифікатор призначення 23 (DestinationID 23) має ранг 1, а ідентифікатор призначення 24 має ранг 2. Це пов’язано з тим, що шлях від товарного складу № 1 до DestinationID 23 займає менше часу, ніж від товарного складу № 1 до DestinationID 24 (проте даний випадок може відрізнятися у конкретному випадку, так як результати аналізу залежать від вихідного класу просторових об’єктів джерел і призначень).

Матриця Джерело-Призначення відображає магазини, які обслуговуються кожним товарним складом, разом із загальним часом шляху для кожного маршруту. Деякі магазини знаходяться в межах 10-хвилинної зони доступності від більше, ніж одного складу і можуть обслуговуватися будь-яким з них.

Матриця Джерело-Призначення може також використовуватися як дані у моделях маршрутізації логістики, які використовують матриці місця призначення джерела, щоб виділяти товари і послуги.

Якщо ви не бажаєте продовжувати роботу з іншими вправами, закрийте додаток ArcMap.
Натисніть Hi (No), щоб не зберігати зміни.

Питання для самостійної роботи
1) Що таке композитні шари?
2) Вхідні класи мережевого аналізу – що це таке?
3) Шар мережевого аналізу «Область обслуговування».
4) Об’єкти мережевого аналізу.
5) Що таке доступність? З якою метою її використовують?
6) Шар мережевого аналізу «Матриця Джерело-Призначення».
7) Назвіть класи мережевого аналізу для шару «Область обслуговування».
8) Де використовується матриця Джерело-Призначення?
9) Назвіть класи мережевого аналізу для шару «Матриця Джерело-Призначення».
10) Що таке атрибути обмеження?
11) Приклади задач пошуку області обслуговування.
12) Що таке матриця Джерело-Призначення?
РОЗПОДІЛ БАЛІВ,
що присвоюються студентам
за виконання лабораторних робіт на тему:

<table>
<thead>
<tr>
<th>№ з/п</th>
<th>Назви робіт</th>
<th>Кількість балів</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Пошук оптимального маршруту з використанням набору мережевих даних</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Пошук найближчої пожежної частини та оптимального маршруту від неї до місця пригоди</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>Обчислення областей обслуговування та створення матриці Джерело-Призначення</td>
<td>3</td>
</tr>
</tbody>
</table>

Перелік рекомендованої літератури

1. Офіційний сайт компанії ESRI / [Електронний ресурс].– Режим доступу: http://resources.arcgis.com/ru/home/.– Заголовок з екрану.
