
Міністерство освіти та науки України

Національний університет водного господарства та

природокористування

Кафедра автоматизації, електротехнічних та комп’ютерно-

інтегрованих технологій

04-03-418M

МЕТОДИЧНІ ВКАЗІВКИ

до виконання лабораторних робіт з навчальної дисципліни

«Програмування. Частина 1. Програмування мовою С++»

для здобувачів вищої освіти першого (бакалаврського) рівня

за освітньо-професійною програмою «Автоматизація,

комп’ютерно-інтегровані технології та робототехніка»

спеціальності 174 «Автоматизація, комп’ютерно-інтегровані

технології та робототехніка», 141 «Електроенергетика,

електротехніка та електромеханіка»

денної та заочної форм навчання

Рекомендовано науково –

методичною радою з якості

ННІ ЕАВГ

Протокол № 3 від 26.11.2024 р.

Рівне – 2024

 2

Методичні вказівки до виконання лабораторних робіт з

навчальної дисципліни «Програмування. Частина 1.

Програмування мовою С++» для здобувачів вищої освіти

першого (бакалаврського) рівня за освітньо-професійною

програмою «Автоматизація, комп’ютерно-інтегровані

технології та робототехніка» спеціальності 174

«Автоматизація, комп’ютерно-інтегровані технології та

робототехніка», 141 «Електроенергетика, електротехніка та

електромеханіка» денної та заочної форм навчання.

[Електронне видання] / Присяжнюк О. В. – Рівне : НУВГП,

2024. – 128 с.

Укладач: Присяжнюк О. В., к.т.н., доцент кафедри АЕКІТ.

Відповідальний за випуск: Древецький В. В., д.т.н., професор,

завідувач кафедри АЕКІТ.

Керівник освітньої програми «Автоматизація, комп’ютерно-

інтегровані технології та робототехніка»: Христюк А. О.,

к.т.н., доцент кафедри автоматизації, електротехнічних та

комп’ютерно-інтегрованих технологій.
Керівник групи забезпечення спеціальності 141
«Електроенергетика, електротехніка та електромеханіка»:
Василець С. В., д.т.н., професор кафедри автоматизації,
електротехнічних та комп‘ютерно-інтегрованих технологій

© О. В. Присяжнюк, 2024

© НУВГП, 2024

 3

Content

1. Programming based on linear algorithms ... 4

2. Development of programs with a branched structure 18

3. Developing programs with one-dimensional arrays. 39

4. Developing programs with multidimensional arrays. 52

5. Developing programs with string variables .. 66

6. Developing programs with file variables. Working with files 87

7. Developing programs with custom classes. Working with classes

and objects ... 101

8. Developing programs with custom classes. Inheritance 119

8. List of recommended literature .. 128

 4

№1. Programming based on linear algorithms

1.1. The purpose of the work

Getting the knowledge and skills necessary for programming using linear

algorithms and learning to use them in practice in the process of developing

programs in the C++ programming language.

1.2. Brief theoretical information

The concept of an algorithm. Types of algorithms

An algorithm is a system of rules for performing a computing process that

necessarily leads to the solution of a certain class of problems after a finite

number of operations. When writing computer programs, an algorithm describes

a logical sequence of operations. Block diagrams are often used to visually

represent algorithms.

Each algorithm is a list of well-defined instructions for solving a problem.

Starting from an initial state, the algorithm's instructions describe the process of

computations that occur through a sequence of states that ultimately culminate in

an end state. The transition from one state to the next is not necessarily

deterministic — some algorithms contain elements of randomness.

An algorithm is a description of the process of solving one or another task.

An algorithm is a finite set of rules arranged in a certain logical order, which

allows the performer to solve any specific problem from a certain class of

problems of the same type.

Algorithms have a number of important properties:

Finitude. The algorithm must always terminate after completing a finite

number of steps. A procedure that has the remaining characteristics of an

algorithm, without possibly being finite, is called a calculation method.

Discretion. The process determined by the algorithm can be dissected

(divided) into separate elementary stages (steps), each of which is called a step

of the algorithmic process or algorithm.

Certainty. Each step of the algorithm must be precisely defined. Actions to

be taken should be clearly and unambiguously defined for each possible case.

Input data. The algorithm has a certain number (perhaps zero) of input data,

i.e., values specified before its operation or the values of which are determined

 5

during the operation of the algorithm.

Output data. The algorithm has one or more output data, that is, values that

have a fairly definite relationship with the input data.

Efficiency. An algorithm is considered efficient if all its operators are simple

enough to be executed accurately in a finite amount of time using a pencil and a

piece of paper.

The following main ways of recording algorithms are distinguished:

verbal - the algorithm is described in natural language;

symbolic - the algorithm is described using a set of symbols;

graphic - the algorithm is described using a set of graphic images.

Table 1.1 Table of main elements of block diagrams

№.

п\п

Element Name Meaning

1.

Calculation

block

Calculated actions or

sequence of actions

2.

Logic block Selection of the direction of

execution of the algorithm

depending on a certain

condition

3.

Data I/O

block

General designation of data

input (output).

4.

Start (end) The beginning or end of the

algorithm, entry or exit

The basic structures of algorithms are a defined set of blocks and standard

ways of connecting them to perform typical sequential events. The main

structures include the following:

- linear;

 6

- branched;

- cyclical.

а б в

Fig.1.1. Linear structure (a), branching (b) and cyclic structure (c)

Algorithms in which actions take place one after the other are called linear

algorithms.

An algorithm in which the action is performed along one of the possible

branches of the problem solution, depending on the fulfillment of the conditions,

is called branched. In branched algorithms, there is a condition, depending on

the fulfillment or non-fulfillment of which a certain sequence of commands

(actions) is executed. As a condition in a branched algorithm, any statement that

can be understood by the executor can be used, which can be true or false. Such

a statement can be expressed both in words and in a formula.

An algorithm in which some part of the operations (the body of the loop – a

sequence of commands) is performed repeatedly is called a cyclical algorithm.

The organization of cycles that never lead to a stop in the execution of the

algorithm is a violation of the requirement of its effectiveness - obtaining a result

in a finite number of steps.

Creating executable program code

Writing a program involves the execution of a certain number of actions, which

can be divided into the following most important stages with more or less detail:

• problem statement;

• choosing a method of solving the problem;

 7

• writing the source text of the program in C and C++;

• entering the source text of the program using a text editor; the

text can be divided into several files (modules); at this stage, we

receive source text files with the extension .c or .cpp;

• compilation of modules (each module separately or all modules

together); at this stage, we receive an object file, that is, a file

with the extension .obj;

• program syntax debugging;

• combining compiled modules into a program (this is often called

program linking or linking); at this stage, the necessary standard

libraries are added to the program and we get an executable file

with the extension .obj);

• launching the program for execution;

• program debugging (program and algorithm testing);

• final design of the program.

When performing each of the specified stages of programming, there is a

need to return to the previous stages, sometimes up to changing the formulation

of the problem. Modern programming systems allow you to conveniently move

from one stage of writing a program to another. This is done by the presence of

the so-called integrated programming environment, which includes a text editor,

compiler, linker, built-in debugger and, depending on the system or its version,

gives the programmer additional conveniences for writing and debugging

programs.

Some implementations of the C++ language, for example, Microsoft Visual

C++, Borland C++, are implemented in the form of integrated development

environments that allow you to perform all the above-described stages of

creating an executable file in automatic mode.

Let's consider several free integrated development environments (Integrated

development and Learning environment, IDLE) that can be used to develop

programs in C/C++ languages:

 – Visual Studio. An integrated development environment (IDLE) developed

by Microsoft. You can download the latest version of the environment at

https://visualstudio.microsoft.com/thank-you-downloading-visual-

studio/?sku=Community&channel=Release&version=VS2022&source=VSLand

 8

ingPage&passive=false&cid=2030

– Dev-C++. The distribution includes the MinGW compiler. The original

version was developed by Bloodshed Software. At the moment, the continuation

of the development is carried out by the Orwell company. You can download the

latest version of the environment at

http://sourceforge.net/projects/orwelldevcpp/;

– Eclipse CDT. An integrated environment based on the Eclipse platform.

You can download the latest version of the environment at

https://eclipse.org/cdt/downloads.php.

 – MinGW Codeblocks and GCC Compiler.

Declaration of variables

Data in the program can be divided into variables and constants. Before use,

variables and constants must be declared using the declaration statement.

A variable is a named area of memory into which values of a declared type

are written during program execution. The variable is declared as follows:

type_of_variable name_of_variable;

\ A data type is understood as a set of permissible values of this data and a

set of permitted operations on them. At the same time, the data type determines

the size of memory occupied by variables and constants of this type.

Service words are used to describe the main types of the C++ language:

• int (integer);

• char (symbolic);

• bool (logical);

• float (valid);

• double (valid with double precision);

• void (empty, has no value).

The int, char, and bool types are called integers, and the float and double

types are called floating-point values. The code that generates the compiler to

handle integer values is different from the code for floating-point values.

int a;

float g, sum;

 9

C++ uses four type specifiers to specify the internal representation and value

range of standard types:

• short;

• long;

• signed;

• unsigned.

Data types used in C++ are listed in Table 1.2.

C++

Table 1.2 – Data types in С++

Type

Size

memory, bytes

Range of values

[signed] char 1 -128…127

unsigned char 1 0…255

[signed] short [int] 2 -32768…32767

unsigned short [int] 2 0…65535

[signed] int 4 -2147483648…2147483647

unsigned int 4 0… 4294967295

[signed] long [int] 4 -2147483648…2147483647

unsigned long [int] 4 0…4294967295

float 4 3.4e-38…3.4e38

double 8 1.7e-308…1.7e308

long double 10 3.4e-4932... 3.4e4932

The order of calculation of the expression is determined by the arrangement

of operation signs, round brackets and priorities of operation execution.

Expressions with the highest priority are evaluated first.

The symbol "=" means a binary simple assignment operation, as a result of

which the value of the right operand is assigned to the left operand:

name_of_variable = expression;

An example of declaring variables and constants:

int a=1, b;

const float g = 8.1;

 10

Arithmetic operations

Arithmetic operations of the C++ language include:

• subtraction and unary minus;

• + addition;

• multiplication;

• / division;

• % % division by modulo;

• ++ increase by one (increment);

• decrease by one unit (decrement).

The operations of addition, subtraction, multiplication and division work in

the same way as in most other algorithmic languages. They can be applied to all

built-in data types. Operations are performed from left to right, that is, the value

of the left operand is calculated first, then the value to the right of the operation

sign. If the operands have the same type, then the result of the arithmetic

operation has the same type. Therefore, when the division operation / is applied

to integer variables or character variables, the remainder is discarded. So, 11/3

will be equal to 3, and the expression 1/2 will be equal to zero.

The operation of division modulo % gives the remainder from integer

division. The % operation can only be applied to integer variables. The

following example calculates the integer part and the remainder of the division

of two integers.

The C language gives the user two more very useful operations specific to

the C language. These are the unary operations ++ and --. The ++ operation adds

one to the operand, the -- operation subtracts one from the operand. Both

#include <stdio.h>

main() {

int x, у;

printf("Введіть ділен і дільник:");

scanf(“%d%d", &x, &у);

printf(“\nЦіла частина %d\n", х/у);

printf("Залишок від ділення %d\n", x%y);

}

 11

operations can be before the operand or after the operand (prefix and postfix

forms). The three operators written below give the same result, but differ when

used in expressions:

x = x + 1 ; ++x ; x++.

A simple program will allow you to understand this

difference.

The result of this program will be the following:

х=6,у=61;

х=6, у=62.

Notice that the printed value of x has not changed on the second call to

printf(), but the value of y has increased by one. In fact, the value of the variable

x also increased by one, but after exiting the printf()/ function. The difference in

the use of prefix ++x and postfix x++ forms is as follows:

x++ - the value of variable x is first used in the expression and only then the

variable is increased by one;

++x - The variable x is first incremented by one, and then its value is used in

the expression.

The priority of arithmetic operations is as follows:

1. ++, --

2. - (unary minus)

3. *, /, %

4. +, -

Operations of the same seniority are performed in order from left to right. Of

course, in order to change the order of operations, parentheses can be used.

#include <stdio.h>

main()

{

int x=5;

int y=60;

x++;

++y;

printf("x=%d y=%d\n", x, у);

printf(“x=%d y=%d\n", x++, ++y);

}

 12

Mathematical functions of the C++ language

To use mathematical functions in C and C++ programs, you need to include

the header file <math.h>. The main functions of this library:

– cos(x) – cosine;

– acos(x) – arccosine;

– exp(x) – exponent;

– log(x) – natural logarithm;

– log10(x) – decimal logarithm;

– round(x) – returns a value rounded to an integer (the returned value is

a floating-point value);

– floor(x) – rounding to the nearest smaller integer;

– ceil(x) – rounding to the nearest larger whole number;

– pow(x, y) – elevation of x to the power of y;

– sin(x) – sine;

– asin(x) – arcsine;

– tan(x) – tangent;

– atan(x) – arctangent;

– sqrt(x) – square root;

– fabs(x) – absolute value for floating-point numbers;

– random(x) – outputs a random number from 0 to the value of the

argument.

Examples of programs in the language С++

Every C++ program must include the main function main(). This function is

the starting point of entry into the program. The main structure of the C++

program is shown in the figure:

 13

1.3. Work program

1.3.1. Familiarize yourself with the basic theoretical information on the topic

of the work, using the given methodological instructions, lectures, as well as the

recommended literature.

1.3.2. Install Visual Studio or Dev-C++

1.3.3. Following the installation points, install the environment on the PC.

1.3.4. Configure the compiler according to the tasks.

1.3.5. According to your number in group list (Variant numbe)r, write two

programs (tasks 1 and 2) in the selected environment and run them for

execution.

1.3.6. Prepare a report on the work done.

Report requirements

The report should include:

• Title page indicating the variant number

• Purpose of work

• Results of execution of individual tasks: block diagrams of algorithms,

program texts, results of execution of the program copied from the

monitor

• Answers to questions

 14

An example of task 1. Develop an algorithm scheme and create a software

project for calculation

 where x is an arbitrary variable to be entered.

1.4. Hardware and software

1.4.1. Personal computer.

1.4.2 Software: Visual Studio or Dev-C++

1.5. Questions

1.5.1. What is the basic structure of a C++ program?

1.5.2. What is the main function for?

1.5.3. How to create executable program code?

1.5.4. What is a variable?

1.5.5. How is a variable declared?

1.5.6. What is a constant?

1.5.7. What types of data do you know?

1.5.8. What memory size corresponds to the data types you know?

1.5.9. What type modifiers are there?

1.5.10. What is IDLE? What are the modern IDLEs?

1.5.11. How to start the program for execution?

1.5.12. How to write a comment in the program?

include <iostream>

#include <stdlib.h>

#include <math.h>

using namespace std;

int main () {

setlocale(0,".1251");

double y, x;

cout<<"Введіть x= ";

cin>>x;

y=(0.2*x*x-x)/((sqrt(3)+x)*(1+2*x))+2*pow(x-1,3)/(pow(sin(x),2)+1);

cout<<"y= "<< y;

return 0;

}

 15

1.5.13. Do spaces and empty lines affect the execution of the program?

1.5.14. What function must the program contain?

1.5.15. What are the printf() and scanf() functions for?

Task 1

Variant

number

Task Variant

number

Task

1 12.34

lg cos

xe
z

x x

− −
=

−

16 1

cos cos

xe x
y

x x

− + −
=

+

2

arccos ln

x tgx
y

x x

−
=

+

17 2

1

xe
y

x tgx

−

=
+ +

3 ()2sin cos 1

ln

x x
g

arctgx x

− −
=

+

18 lg(1)

cos

x x
y

x

+ +
=

4 3 3

sin cos

xe x
p

x x

+ −
=

+

19 2ln 1 sinu x x= − −

5 4

lg

xe x
y

x

− −
=

20 ()1xy e tg x−= + −

6
arcsin

1 cos

x
y

x

 
=  

+ 

21 2 ln x
c

tgx

+
=

7 sin 4

ln

x
y x

x

+
= +

22 2 lgy x x x= + 

8
2

xe x
y tgx

tg x

−
= +

23 lg(1)

cos

x x
y

x

+ +
=

9 2sin

ln(1)

x
u

x
=

−

24 ()
23sin cos 1y x x= − −

10 2 4lgy e x=  25 ln(1) ln
4

cos()

x x
c

x 

− +
= −

−

11 4

cos 1

xe
y

x

− −
=

+

26 sin(1)
1

lg

x
y

x

+
= −

12 2

3
sin

cos

x
c x

x
= −

27 2sin (1)y x= −

13 lg

1 cos3

x x
y

x

−
=
+

28 ln 2

1 cos

x x x
y

x

 −
=

+

14 ln 5

cos 4

x
c

x x

+
=

+

29 1 5(1)

lg

xe x
y

x

− − +
=

 16

15 ()
2

cos 1

ln

x
y

x

−
=

30 ()
2

1

cos

x
y

x x

−
=

+

Task 2

Variant

number

Task

1 2 2

lg 7

x z
y

x

−
=

−
,

sin

ln() 1

a
x

a b
=

+ −
,

a b
z

ab

+
= , 3,5a= , 1b= ;

2 cos
ln

1

x x y
z

y

+
=

−
,

()
2

a b
x

b

−
= , cosy a ab= + , 0,2a= , 7b= ;

3
1y x z=− − + ,

sin

2

ae a
x

ba

− +
= ,

()
1

arctg b a b
z

a

− +
=

+
, 1.2a= , 3b= ;

4

x yz c e c x− +=  −  ,
lg(2)

0,1x
tg





+
= + ,

sin
4

ln ln

c
ctg

y
c





−

=
+

, 4,5c= , 2 = ;

5 1

lg

yx e
z

x

−− +
= , 2 ()y a a b= + ,

1 b
x

a b

+
=

+
, 1,75a= , 0,4b= ;

6 4

sin

xye
p

xy

− +
= , 2 2x a b= + ,

1
y

b
= , 2,4a=− , 0,87b= ;

7

()
2

1
x y

r
x y

+
= +

−
, sin()x ab= , lny a b= − , 1,8a= , 0,6b=− ;

8 2

ln
1.3

x
y = + , 6x k= + , ln lgy k m= + , 14k = , 2,2m= ;

9

()

3

1

x

tg y
 =

−
,

1
x a

b
= + , sin

2

b
y b= + ,

1

2
a= , 1,4b= ;

10 () cost m y my= − + , m x a= + , siny a x=  , 3x= , 1,7a=− ;

11 lg 1x y = − + , ()
2

1 cosx a b= − + , 2y a tg b= + , 1a= , 4b=− ;

12 1

2

x
tg k x

y


+
= + +

−
, x m n= + ,

3

6

km
y

−
= , 3m= , 2,2n=− , 0,8k = ;

13

5
j m y


=− + − ,

2
x mn

m
= + , 3 lny m n= − + , 2m=− , 3,87n= ;

 17

14 0,12

1

x
f

y

−
=

−
 , 2 2x e= + , siny a a= − , 6,45a= ;

15
sina y x= − + , ()

2
1 0,3y = − − , cos

2
x


= + , 4,4 = , 1,87 = ;

16 sinn x tgy= + , 2 3x  = + − − , ()siny  = − , 5 = , 0,1 =− ;

17 ()
2

0,1b z z= + + + , lg k x = + , 2 12,47z x= − , 0,3x= , 4k= ;

18 3 zy ax e= + ,
z

x tg z
a

= + , 3 1z a= + , 2a= ;

19 2 3x y
t

x y

−
=

+
, 1x z= + , 1 sinz y= + , 1y=− ;

20
5,5 sin

4

y
m y= − + , lny x= , 2 3,41x e= + ;

21 lnzg e z= + , 6z x= + , ()
2

21,4 0,5 cosx  = − − , 0 = ;

22 cos

17,14

m y my
t

m y

− +
=

+ +
, 2y m e= + , 2,7m= ;

23 2

cos
x

y


= + , 2 1x e= − , lg 3y a a= + , 2,3a= ;

24

4

mj x y
−= + − ,

n
x

m
= , 3 lny m n= − + , 2m=− , 2,4n= ;

25 3 2,5

1

m x
i

m

+
=

−
, cos 2x

y


= − , 3y m= , 1,4m= ;

26 0,1 sina y x=  + + , ()1y tg x= − , lg 2 1.4x = + + , 3.6 =− ;

27 ()sin 1 cosd x = − + , 1x tg= + , 3,41 = ;

28
sin 2y x tgy= + , ln 2 lg 2x y= − − + ,

8
y e  −= + , 4,45 = ;

29
2sin

8

x y
h



− 
=  

 
, 2 0,15x y= + , 1y = ;

30 lg 1 ln 2 1xz x= + − − , 2coskx e ky= + , y k e= − , 1.7k =

 18

 №2. Development of programs of a branched structure

 2.1. The purpose of the work

Learn to write programs with a branched structure. Learn the types of

cyclic algorithms and cyclic operators of the C++ language.

2.2. Brief theoretical information

Relational operations and logical operations

Relational operations are used for comparison. The complete list of relational

operations in the C language is as follows:

< less,

<= less than or equal to

> more

>= greater than or equal to

== is equal to

!= not equal.

There are also three logical operations in the C language:

&& and (AND),

|| or (OR),

! not (NOT).

Relational operations are used in conditional expressions, or, for short,

conditions. Examples of conditional expressions:

a<0, 101>=105, 'a'=='A', 'a'!='A'

Each conditional expression is checked whether it is true or not. More

precisely, it should be said that each conditional expression receives the value

"true" ("true") or "incorrect" ("false"). There is no boolean type in the C

language. Therefore, the result of a logical expression is an integer arithmetic

value. In C, "true" is a non-zero value, "false" is zero. In most cases, the non-

zero "true" value is one. So, from the above examples of conditional

expressions, the 2nd and 3rd received the value "zero", and the 1st and 4th -

non-zero values. Let's consider an example.

 19

Logical operations in the C language correspond to the classical logical

operations AND(&&), OR (||) and NOT (!), and their result corresponds to the

corresponding tables, which are commonly called truth tables:

Х Y X AND Y X OR Y NOT X X XOR Y

1

1

0

0

1

0

1

0

1

0

0

0

1

1

1

0

0

0

1

1

0

1

1

0

The XOR operation is called the exclusive-or operation. In the C language,

there is no sign of the logical operation XOR, although it can be implemented

using the operations AND, OR, and NOT. However, in the future we will

consider bitwise operations, among which the "which excludes or" operation

already exists.

Relational operations and logical operations have a lower priority than

arithmetic operations. This means that the expression 12>10+1 is treated as the

expression 12>(10+1).

The priority of logical operations and relational operations is as follows:

1. !

2. >, <, >=, <=

3. ==, !=

4. &&

5. ||

Boolean expressions, like all other expressions, can use parentheses with the

highest priority. In addition, parentheses allow you to make logical expressions

more clear and easy to read. Conditional and logical expressions are used in

#include <stdio.h>

main()

{

int tr, fal;

tr = (101<=l05); /*вираз "істинний" */

fal = (101>l05); /*вираз "невірний" */

printf("true - %d false - %d\n", tr, fal);

return 0;

}

 20

control operators of the C language, such as if for and others. A feature of

logical operations && and || lies in the fact that if the value of the left operand

(expression1) is zero when calculating the result of the operation (expression 1)

&& (expression 2), then the value of the second operand will not have any effect

on the result of the operation. In this case, the second operand is not evaluated.

And therefore, the hopes that the calculation of the second operand may increase

some variable due to the ++ operation are not justified. The same applies to the

operation ||. In this case, the second operand is not evaluated if the value of the

left operand is not zero.

Assignment operation

The assignment operation in the C language is denoted simply by the sign =.

Unlike other languages, C can use the assignment operator in expressions that

also contain comparison operators or logical operators. In the fragment

if ((f=x-y)>0) printf ("Число х, більше чим у)

first, the size of x-y assigned to the variable f is calculated, then its value is

equal to zero. Another feature of using the assignment operator in the C

language is the ability to write the operator:

а=b=с=х*у

Such multiple assignment is commonplace in C and is done from right to left.

First, the value of x*y is calculated, then this value is assigned to c, then b, and

only then a. An expression to which a value can be assigned must be on the left

side of the assignment operator. Such an expression in the C++ language, for

example just a variable, is called an value size. The expression 2=2 is false

because no value can be assigned to a constant: a constant is not the size of an

lvalue.

C has additional assignment operations +=, -=, /=, *= and %=.

Instead of the expression n = n + 5, you can use the expression n += 5. Here

+= is an additive assignment operation, as a result of which the dimension on the

right is added to the value of the variable on the left.

Similarly

m-=20 is the same as m=m-20;

m*=20 is the same as m=m*20;

m/=l0 is the same as m=m/10;

m%=10 is the same as m=m%10.

 21

These operations have the same priority as the assignment operation =, that

is, lower than the priority of arithmetic operations. There are a few additional

assignment operations that we'll mention below. The operation x+=5 is

performed faster than the operation x=x+5.

Operation condition ? :

The condition operation is the only C language operation that has three

operands. This operation has the form:

 (expression1)? (expression2):(expression3)

The expression (expression1) is calculated. If this expression has a non-zero

value, then expression (expression2) is calculated. The result of the operation

will be the value of the expression (expression2).

If the value of the expression (expression1) is zero, then the expression

(expression3) is calculated and its value will be the result of the operation. In

any case, only one of the expressions is calculated: (expression2) or

(expression3). For example, it is convenient to use the condition operation to

find the largest of two numbers x and y:

max = (x>y) ? x : y ;

or to find the absolute size of the number x:

abs = (x>0) ? x : -x ;

If the second and third operands are sizes of the value type, that is, they can

be in the left part of the assignment operation, then the result of the condition

operation is also a size of the value type. With the help of this operation, you can

solve the problem in one line: replace the largest of the numbers x or y with the

value 1:

 (x>y)? x :y=1;

Coma operation

The comma operation has the lowest priority of all C and C++ operations.

The comma operation is performed from left to right, and its value is the value

of the right operand. In the expression (expression1), (expression2) the value

(expression1) will be calculated first, then the value (expression2). This value

will be the result of the operation.

 22

Sizeof operation

The sizeof operation has two forms: sizeof (type) or sizeof (expression).

The result of this operation is an integer value of type size or an expression

in bytes. When using the second form, the value of the expression is not

calculated, but only its type is determined. Usage examples: sizeof (short int) or

sizeof (x). The void type cannot be used as a type in the sizeof operation.

Operations. and -> will be defined below.

Next, we will see that some operation signs have several meanings. So, the &

operation sign has two meanings: a binary bitwise AND operation and a unary

operation of taking an address.

Controlling operators

We already know the simplest form of two such operators: if and for. Let's

consider these and other operators in more detail. Control operators can be

divided into three categories:

1. Conditional statements if, if-else and switch.

2. Loop operators for, while and do-while.

3. Goto unconditional transition operator.

Conditional statement if

The full form of the operator is as follows:

if (condition) operator;

else operator;

 If the value of the condition is "true", then the operator (it can be a

compound operator - block) that follows the condition is executed. If the

condition takes the value "false", then the statement following the else keyword

is executed. In the statement of the if statement, the second part (that is, the else

statement) may be missing. Then, if the condition takes the value "false", the

next statement of the program is executed immediately. In fact, an arbitrary

expression can be used as a condition. The if statement only checks whether the

value of this expression is non-zero (true) or null (false). With the help of the if

 23

operator, you can, for example, calculate the value of the function sgn(x) - the

sign of x. The function sgn(x) takes the value 1 if x > 0, the value -1 if x < 0, the

value 0 if x = 0.

#include <stdio.h>

int main() {

int sgn;

float х; рrintf(“Введіть число:”); scanf(“%f”,%x);

if(x>0) { sgn=l;printf(“число %f позитивне sgn”);}

if(x==0) { sgn=0;pirintf("число %f дорівнює нулю sgn”);}

if(x<0) {sgn= -l;printf("число %f негативне sgn”);

return 0;}

It is often necessary to use the if-else-if construction:

if (condition) operator;

else if (condition) operator;

else if (condition) operator;

 ……………...

else operator;

In this form, the conditions of the if statements are checked from top to

bottom. As soon as one of the conditions takes the value "true", the statement

that follows this condition will be executed, and the rest of the construction will

be ignored. The if statements of the previous example can be written in another

form:

#include <stdio.h>

int main() {

int sgn;

float х;

printf(" Введіть число:"); scanf(“%f”, &х);

if (х>0) { sgn=1;printf(“Число %f позитивне \n", х); }

else if(x<0) (sgn= -l;printf("числo %f негативне \n", х); }

else (sgn=0;printf(“число %f дорівнює нулю \n", х); }

return 0;}

 24

As we have already said, some expression can be used as a condition of the

if operator. So, in order to check whether the number x is equal to zero or not,

you can write

if(x=0) printf("Число дорівнює нулю");

else printf("Число не дорівнює нулю");

The same result can be obtained by the following operator:

if(!x) print("Число дорівнює нулю");

else print(“Число не дорівнює нулю");

The following construction is called a nested if statement:

if(x)

if (у) operator1;

else operator2;

In this form, it is not clear which of the if statements else refers to. In the C

language, the else operator is associated with the nearest if in the corresponding

block. In the last example, else refers to if(y). In order to attribute else to the

if(x) operator, you need to arrange the operator brackets accordingly:

if(x)

{

if (у) operator 1;

}

else operator р2;

Now if(y) refers to another block.

Operator SWITCH

The C++ language has a built-in multiple choice operator called switch.

switch (expression)

{

case constant 1: sequence of operators

 25

break;

case constant2: sequence of operators

break;

 …………

case constantN: sequence of operators

break;

default sequence of operators

}

First, the expression in parentheses for the keyword is calculated, then the

list of labels (case constant 1, etc.) is reviewed until a label corresponding to the

value of the calculated expression is found. Next, the appropriate sequence of

operators following the colon is executed. If the value of the expression does not

correspond to any of the labels of the switch operator, then the sequence of

operators following the keyword default is executed.

The construction of the switch operator is allowed when the word default

and the corresponding sequence of operators may be absent.

Another previously unknown operator is break. When the keyword break

occurs after a sequence of statements, the execution of the break statement leads

to exiting the switch statement and moving to the next statement of the program.

The presence of the break statement in the switch statement is optional. What

will happen if there are no break statements? The answer to this question will be

provided by the results of the following two versions of the program:

#include <stdio. h>

int main() {

char ch;

printf("Введіть заголовну літеру алфавіту:”);

ch=getchar();

if(ch>='A' && сh<='Я')

switch(ch)

{

case 'A': printf("Alex \n"); break;

case 'Б': printf(“Bob \n“); break;

case 'В': printf(“Itan \n”); break;

case ‘Г': print("Max\n"); break;

 26

default: рrintf(“Other \п"); break;}

else рrintf("Wrong letter \п");

return 0;}

Suppose you run the first program and enter the letter B. The result of the

program will be the following line:

Bob

We can see that all statements, starting with the label 'B', including the one

following the word default, have been executed.

The break statement ends the sequence of statements related to each label.

Then the next statement of the program is executed. If there is no break

statement, then execution continues to the first break statement or to the end of

the switch statement.

Loops

Loops are necessary when we need to repeat some action several times,

usually while some condition is met. In the C++ language, three types of loop

operators are known: for, while, and do-while.

The for loop

The basic form of the for loop has the following form:

for (initialization ; condition check ; change) operator;

In its simplest form, initialization is used to assign an initial value to a loop

parameter. A condition check is usually a conditional expression, used to

change the loop parameter each time the loop is repeated. These three loop

header divisions must be separated by a semicolon. The loop is executed until

the conditional expression is true. As soon as the condition becomes false, the

next statement in the for loop starts executing. The simplest example of the for

loop statement:

for(i=0; i<10; i++) printf(“%d\n", i);

 27

As a result of the execution of this statement, the numbers from 0 to 9 will

be printed in the column. To print these numbers in reverse order, you can use

the following statement:

for(i=9; i>0; i++) printf(“%d\n”, i);

The for loop is similar to similar loops in other programming languages,

and at the same time, this statement in C is much more flexible, powerful, and

applicable in many situations.

It is not necessary to use an integer counter as a loop parameter. Here is a

fragment of the program that displays the letters of the alphabet on the screen:

unsigned char ch;

for (ch='A'; ch<=”Я”; ch++) printfl("%c“, ch);

The next fragment of the program

for(ch='0'; ch! ='N';) scanf("%c", &ch);

will be executed until the character 'N' is entered from the keyboard. Note

that the place where the increment should be is empty. A loop from which

there is no way out, a so-called endless loop, can be formed accidentally or

intentionally.

Here are three examples of such cycles.

for (;;)рrintf{“ An endless cycle \n");

for(i=l;l;i++) рrintf("An endless cycle \n");

for (i=10:i>6;i++) printf(“An endless cycle \n");

However, for such cycles, an exit can also be arranged. For this, the break

operator, which we met above, is used. If the break operator is found in the

component statement of the loop, then the execution of the loop is immediately

terminated and the execution of the next statement of the program begins.

#include <stdio. h>

main() {

 28

unsigned char ch;

for(;;) {

ch=getchar(); /*Read symbol */

if (ch=='Q') break; /Check symbol */

printf("%c", ch); /*Print symbol */

 …

return 0;}

This program will print the characters entered until the character 'Q' is

entered. Perhaps it is syntactically correct, the presence of an empty operator

(absence of an operator) in the for loop.

For example for (i=0;i<10000;i++);

While and do-while loops

The next loop statement in C++ is a while loop. The basic form has the

following form: while (condition) operator; where the operator can be a

simple, compound, or empty operator. A "condition", like all other statements,

is just an expression. The loop is executed until the condition evaluates to true.

When the condition becomes false, the program will transfer control to the

next program statement. Just like in the for loop, in the while loop, the

condition is first checked, and then the operator is executed. This is the so-

called cycle with a premise.

Unlike previous loops in the do-while loop, the condition is checked at the

end of the loop statement. The basic form of the do-while statement is as

follows:

do{ sequence of operators }

while (condition);

Curly brackets are optional if there is one operator inside them. However,

they are most often put for better readability of the program, as well as not to

confuse (the programmer, not the compiler) with the while statement. The do-

while statement is called a loop statement with a postcondition. No matter what

the condition is at the end of the statement, the set of statements in curly

brackets must be executed one (first) time. In for and while loops, the

 29

statement may not be executed once.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

/* Гра " Вгадай число " Програма вибирає випадкове число від 1 до

100, ви повинні вгадати його */

main() { int s, x, n=0;

randomize();

s=random(100)+l;

do

{ рrintf(“Введіть число від 1 до 100: “);

scanf("%d", &x);

n++;

if(s<x) рrint(“Загадане число менше\n");

if(s>x) рrintf(“Загадане число більше\n”);

} while (s-x);

printf("Bи вгадали число ! \n”);

рrintf("Затратили на вгадування %d спроб\n", n);

return 0;}

Nested loops

When one loop is inside another, it is said to be a nested loop. Nested loops

are often found, for example, when filling tables. As an example, consider a

program for printing a multiplication table of integers..

#include <sidio. h>

int main()

{ int i, j;

for(i=0;i<10;i++) {

for(j=1;j<5;j++) printf(“%d * %d = %2d “, i, j, i*j);

printf(\n");

…

Operator break

 30

The break operator has two uses. The first is the end of the case in the

switch statement. The second is the immediate end of the cycle, not related to

checking the usual condition of the end of the cycle. When the break statement

occurs inside a loop statement, the loop is immediately exited and the

statement following the loop statement is executed.

#include <stdio. h>

main() {

 int i;

 for(i=0;i<1000;i++)

 {

 printf(“%d-%d \n”, i, i*i*i);

 if (i*i*i>= 10000) break;

 }

}…

Operator continue

Another useful operator is the continue operator. If the continue statement

is encountered in a loop statement, it transfers control to the beginning of the

next iteration of the loop. In the while and do-while loops - to check the

condition, in the for loop - to increase. This statement is necessary if you want

to end the current iteration of the loop and not execute the remaining

statements, but immediately go to the next iteration of the loop. For example, it

can be used in a program that prints natural numbers that are multiples of

seven.

#include <stdio. h>

main()

{ int i;

 for(i=0;i<1000;i++)

 {

 if(i%7) continue;

 printf("%8d", i);

 }

}

 31

2.3. Work program

2.3.1. Start the IDLE environment.

2.3.2. Compose the algorithm of the program for finding the value of the

function, which is calculated depending on the value of the argument, from task

1 according to your version. Develop a block diagram of the algorithm.

2.3.3. Write a program to calculate the value of the function and task 1.

2.3.4. Compose the algorithm of the program for calculating the value of the

function (task 2) on the specified interval with the specified step, according to

your option. Draw block diagrams of algorithms.

2.3.5. Write programs for calculating the values of the functions from task 2.

2.3.6. Compile the algorithm of the program for calculating the value of the

function (task 3) on a certain interval with a given step of changing the argument

according to your version. Draw a block diagram of the algorithm.

2.3.7 Compile a program to calculate the value of the function from task 3.

Program requirements:

Task 1: data should be entered from the keyboard, final values and

intermediate variables should be displayed on the screen in a convenient form.

Task 2:

• input data (initial and final value of the argument, step of changing the

argument) to be entered by the input operator;

• display the calculation result in the form of a table (column 1 - point

number, 2 - argument value, 3 - function value);

• write 2 versions of the program: 1 – using the goto unconditional transition

operator, 2 – using the loop operator.

Task 3:

• boundaries of the function definition area, the step of changing the

argument, the initial value of the argument must be entered by the input

operator;

• display the calculation result in the form of a table (column 1 - point number, 2

- argument value, 3 - function value).

2.4. Hardware and software

2.4.1. Personal compute.

2.4.2. Software: Visual Studio or Dev-C++

 32

2.5. Questions

2.5.1. What arithmetic operations do you know?

2.5.2. Name the relation operations.

2.5.3. What logical operations are used in the C++ language?

2.5.4. What does the assignment operation look like in C++?

2.5.5. The IF operator: record form, purpose.

2.5.6. The switch operator: record form, purpose.

2.5.7. What types of cycles can you name?

2.5.8. Name the cycle operators of the C++ language known to you.

2.5.9. Write down the general form of the for loop statement.

2.5.10. Write down the general syntax of the loop while statement.

 2.5.11. Reproduce the general record of the do-while loop statement.

Task 1

Variant

number

Task Task Task

1
()2cos ,

4

1 , 1
4

1
,1

1

x x

y x x

x
x


 




− − −  



= +  



 −

16

2

5,4,0 2

,2 8

lg 7,8 ,8

x x x

y arctgx x

x x

 −  


=  
 − 


2

2

3 2 3 2

1,4
,1 3,2

ln

0,75,0 1

cos sin , 0

x
x

x

y x x

x x x

+
−  


= −  
 − 



17
2

3

,0 1

ln ,1 10

, 10x

x
arctg x

x

y x x

e x



−

+
−  


=  





3 32,5

2

1, 0, 1

lg ln ,1 5,5

1
, 1, 5,5

sin

2 ,0 1

xe x x

x x x
y

x
x x

x x

x x

− +  −


−  


= −
 =− 

−
  

18

2

sin 2, 4

1,2
,4 10

4

, 10

xe x

x
y x

x

x x

 − 


−
=  

+




4 3 2 22 ,1 20,4

(),0 1

, 0x z

x x z x

y arctg x z x

e x+

 +  


= −  
 


19 3

2 2

, 9, 1

, 0, 1 1

ln , 0,

cx c x

c
y ctg c x

x

c x c x c

−  −



=  −  

 −  


 33

5

2 3,14

1
lg ,0

16 4

1
(2,0,4) , 1

4

arccos , 1
4

x x

y x x

x
x



−


−  




= −  






20

2

, 1, 0

ln ,2 , 0

lg ,0 ,0 2

xa

x a
xa x

e

y x x a

a a x

+
 


= −  


  


6

2

,1

lg 1 , 1

, 1

x
e x

y x x

arctgx x

− 


= − 
 −


21

2

2

, 2

lg , 2

sin , 2

e xx e x

y x x

x x

− − 


= −
 

7 12 2,71, 8,5

,8,5

2,7, 8,5

x x

y x x

x x



 

− +  


= −  


− 

22

3

0, 10

1
, 10 0

ln ,10

,0 10

x

x
ctg x

ey

x x

x x

−
 −
 −  

=
 


 

8 23 lg ln , 1

1, 1x

x x x
y

e x−

 + 
=

+ 

23 2 1 , 1

lg 1 , 1

xe x x
y

x x

− + − 
=

− −  

9

2

2

3

arccos , 1
2

, 1 1

ln , 1

10 , 1

x

x
x

e xy

x x

x





−

−

−
−


−  =

 


=

24

3

(1), 1

1
, 1 0

ln ,1

,0 1

sin x x

x
ctg x

ey

x x

x x

+ −
 −
 −  

=
 


 

10 3 2

1

3,1 10

(9),0 1

, 0x

x x x

y arctg x x

e x+

 +  


= −  
 


25 ()
3 1 2

1

1 , 5

ln ,0 1

cos 1 ,1 5

x
x x

y x x

x x

−

−

 − 


=  
 −  


11
()

()

2

2

1

arcsin 1 , 0

lg 2 4,4,0 3

, 3x

x x

y x x

e x

 − + 



= +  

− 

26
2sin , 1

8 3

,1 5

,5 11

0,15 , 11

e

x

x y
x

g y x

e x

x x



−

−

 − 
= 

 
=  


 




 34

12 ()3

3

2

sin 1 , 6 2

, 6

4,4 lg ,6 2

ln , 6

x

x x

e x
y

x x

x x

−

 − −  

 

=
  


−

27 ()

()

,0

ln 3,18 ,2

1
, 2

, 0

arctg x x

x x

y
x

x

x

 



 




  


− 
=

 
−


13

()2 3

2

3 2

,1

ln , 10

,0 1

2 , 0

e

x

e x x e

x e e x

y x
x

e

ctg x x

− − +  


−  


=
 


 

28 ,1 2

1,2 5

1, 1

x

e

e x

y x x

x

−  


= +  
 


14

2

, 0

2 , 0

x x>
y

x x


=

− 

29 2sin , 1

, 1 0

lg , 1

x x

y x x

x x x

 −


= − −  
 − 


15

2

sin
, 0

2 ln , 0

0, 0

x
x

x

y x x x

x





= + 
 =



30

()

124 , 1

1 ,1 10

1, 10

xe x

y tg x x

x

 − 


= −  
 

Task 2

Variant

number

Task

1 2

2

cos

1

x
y

x
=

+
 , 3,8 7,6x  , 0,6x = ;

2
3

0,5

7,5

tg x
y

x
=

+
 , 0,1 1,2x  , 0,1x = ;

3 2 8

3

xe
y

x

−
=

+
 , 1 2,3x−   , 0,7x = ;

4 cos2

3

x x
y

x

+
= , 2,3 5,4x  , 0,8x = ;

5 cos2

2

x x
y

x

+
=

+
 , 0,2 10x  , 0,8x = ;

6 3 2cos

1,5 2

t
y

t
=

+
 , 2,3 7,2t  , 0,8t = ;

7 3 2

3cos 1

x x
z

x

+
=

+
 , 0 2x  , 0,4x = ;

 35

8
2

sin2

3

t t
z

t

+
=

−
 , 2,4 6,9t  , 0,4t = ;

9 3 2

3ln

x
y

x

−
= , 4,5 16,4x  , 2,2x = ;

10 2,3 8

2cos 1

t
z

t

+
=

+
 , 0 6,5t  , 1,1t = ;

11 arccos

2 1

x
y

x
=

+
 , 0,1 0,9x  , 0,1x = ;

12
2

5 (7)

(3)

tg x
y

x

+
=

+
 , 1,2 6,3x  , 0,2x = ;

13 1,5 ln2

3 1

t t
y

t

−
=

+
, 2,5 9t  , 0,8t = ;

14 3

2

2,5

2x

x
y

e
=

+
 , 0 0,5x  , 0,1x = ;

15 3 2

2 1

x
y

arctg x

−
=

+
, 3,2 5,2x  , 0,4x = ;

16
2

5lg

1

x
y

x
=

−
 ,1,2 3,8x  , 0,4x = ;

17 6 4

sin3

x
z

x x

+
=

−
, 2,3 7,8x  , 0,9x = ;

18 2

2

2sin (2)

1

x
z

x

+
=

+
, 7,2 12x  , 0,5x = ;

19 2(3 2)

sin 3

x
y

x

+
=

+
, 4,8 7,9x  , 0,4x = ;

20 32sin

3 1

x
y

x
=

+
’ 1 1x−   , 0,25x = ;

21 2 3

3

tg t t
y

t

−
=

+
 , 0,2 0,8t  , 0,1t = ;

22 3 1x
y

arctgx

+
= , 0,1 1,5x  , 0,2x = ;

23 2 8

cos3 1

t
y

t

+
=

+
, 2 6,5t  , 0,8t = ;

24 arccos

3 1

x
y

x
=

+
, 0,1 0,9x  , 0,1x = ;

25 2

2

(2)

1

x
y

x

+
=

+
, 2,3 8,3x  , 0,6x = ;

 36

26 ln 2

3 1

t t
y

t

−
=

+
, 2,1 8,5t  , 0,7t = ;

27 2 2

cos5 2

x x
y

x

+
=

+
, 2 4,5x−   , 0,5x = ;

28 ln 1 5

2 3

x
y

x

+ +
=

+
, 0,2 0,9x  , 0,15x = ;

29 cos2

3

x x
y

x

+
= , 2,7 8x  , 0,7x = ;

30
2

arcsin 2

1

x x
z

x

+
=

+
, 0 0,4x  , 0,2x = .

Task 3

Variant

number

Task

1

()3

sin ,

ln ,

y y
w

y y

+
=

+

6,5 0,5

0,5 8; 0,5;

y

y y

−  

   =

2

()

1,26 ,

0,4 ,

v v
x

arcctg v

 +
=

+

0 0,1

0,1 4; 0,1

v

v v

 

   =

3

()
0,1cos ,

lg 0,6 ,

y y
f

y y

+
=

+ +

2 0,5

0,5 3; 0,5

y

y y

−  

   =

4

()

sin ,

0,3 ,

xx e
y

arcctg x

 +
=

−

2 0

0 3; 0,5

x

x x

−  

   =

5

()

sin ,

0,3 ,

z z
w

arcctg x

−
=

−

2 0,5

0,5 3; 0,5

z

z z

−  

   =

6

()

cos ,

ln ,

t t
v

arctg t t

+
=

+

0 0,5

0,5 2; 0,3

t

t t

 

   =

7

()

,

ln sin ,

xarcctgx e
y

x x

 +
=

+

0 0,5

0,5 8; 0,5

x

x x

 

   =

8

()

20,3 cos ,

0,34 0,2 ,

v v v
w

ctg v

 − +
=

−

3

1 7; 1

v

v v

− 

   =

9

()

3 sin ,

ln ,

x x
z

arctg x x

 +
=

+

0 0,3

0,3 2; 0,3

x

x x

 

   =

 37

10

()
0,6 0,3 ,

ln cos ,

vv
w

v v v

 −
=

+ +

2 0,3

0,3 5; 0,5

v

v v

−  

   =

11

()

0,8sin ,

ln 0,3 ,

x x
u

arctg x

−
=

+

0 2,2

2,2 3; 0,4

x

x x

 

   =

12

()
cos ,

ln ,

z z
v

z z

−
=

+

0 0,5

0,5 7; 4; 4

z

z z z

 

   = 

13

()
1,3 sin ,

lg ,

t t
u

t t

−
=

+

4 2

2 4; 0,5

t

t t

−  −

−    =

14

()

0,2 ,

arcsin 0,25 ,

t arctgt
u

t

+
=


2 0

0 5; 0,8

t

t t

−  

   =

15 ,

lg ,

arcctgz z
y

z z

+
=

+

2 0

0 5; 0,5

z

z z

−  

   =

16

()

cos ,

ln ,

z z
r

arctg z z

+
=

+

1 0

0 1; 0,4

z

z z

−  

   =

17

()

2 3 ,

ln sin ,

v v
w

v v

 +
=

+

0 0,5

0,5 8; 0,5

v

v v

 

   =

18

()
,

1.4 ,

xx e
y

arcctg x x

 −
=

+ −

2 2

2 5; 0,5

x

x

−  

  =

19

()
1.3 sin ,

,

y y
t

arctg y y

+
=

+

0 0,3

0,3 2; 0,3

y

y y

 

   =

20

()
cos ,

lg ,

w w
x

arctgw w w

+
=

− +

0 0,5

0.5 2; 0,2

w

w w

 

   =

21

()

2 ,

ln ,

xx e
t

arctgx x

 −
=

+

0 0,4

0,4 2; 0,2

x

x x

 

   =

22

()

,

ln ,

xt e
f

t t arctg t

 +
=

− +

0,5 0,5

0,5 4,5; 0,5

t

t t

−  

   =

23

()

,

lg cos ,

varctg v e
u

v v

 −
=

+

0 1

1 3; 0,5

v

v v

 

   =

24

()

2sin ,

ln ,

z z
x

arctg z z

 −
=

+

0 0,2

0,2 3; 0,2

z

z z

 

   =

 38

25

()

2 3 ,

ln ,

v v
f

arcctg v v

 −
=

+

2 0

0 3; 0,5

v

v v

−  

   =

26
2

ln ,

2,

x x
z

x

−
=

−

1 2

2 5; 0,2

x

x x

 

   =

27 2

2

sin ,

sin ,

t t
y

t t

 −
=

−

0

0 ; 0,1

t

t t





−  

   =

28 2

4

3 ,

,

x x
f

x

 −
=


0 3

3 10; 0,5

x

x x

 

   =

29 3

2 2

cos ,

sin ,

x x
y

x x


=


0

0 ; 0,1

x

x x





−  

   =

30 2

2

5 ,

,

t t
z

t t

 −
=

+

5 7

7 10; 1

t

t t

 

   =

 39

 №3. Development of programs with one-dimensional arrays.

3.1. The purpose of the work

To study the organization of data of the same type in the form of arrays in the

C++ language, their declaration, methods of accessing elements and

programming of processing algorithms.

3.2. Brief theoretical information

Pointers

Pointers are variables that store the addresses of another variable. Most

often, these addresses indicate the memory location of other variables. For

example, if the variable x contains the address of the variable y, then the

variable x is said to "point" to y.

Pointer variables (or pointer type variables) must be declared accordingly.

The format of a pointer variable declaration is as follows:

type *variable_name;

In this entry, the type element means the base type of the pointer, and it

must be a valid C++ type. The variable_name element is the name of a pointer

variable.

To understand what has been said, consider the following example. To

declare the variable p as a pointer to an int value, use the following

instruction: int *p;

To declare a pointer to a float value, use the following instruction:

float *p;

In general, using an asterisk (*) before a variable name in a declaration

statement turns that variable into a pointer.

The type of data a pointer will refer to is determined by its base type. Let's

consider another example:

int *ip; // A pointer to an integer value

 40

double *dp; // Pointer to a value of type double

As noted in the comments for this program, the variable ip is a pointer to

an int value because its base type is int, and the variable dp is a pointer to a

double value because its base type is double. So, in the previous examples, the

variable ip can be used to point to an int value, and the variable dp to a double

value. However, remember: there is no real way to prevent a pointer from

referencing "treasury-what". This is why pointers are potentially dangerous.

Operators of work with pointers

Two operators are used with pointers: "*" and "&". The "&" operator is

unary. It returns the memory address at which its operand1 is located. For

example, in the process of executing such a piece of program code

ptr = &balance;

the address of the balance variable is placed in the ptr variable. This

address corresponds to the area in the computer's internal memory that

belongs to the balance variable. Executing this instruction has no effect on the

value of the balance variable. The purpose of the "&" operator can be

"translated" in Ukrainian as the "address of the variable" before which it is

located. Therefore, the above assignment instruction can be expressed as

follows: "ptr variable gets address of balance variable". To better understand

the essence of this assignment, let's assume that the variable balance is located

in the memory area with address 100. Therefore, after the execution of this

instruction, the variable ptr will acquire the value 100.

The second operator for working with pointers (*) serves as a complement

to the first (&). It is also a unary operator, but it accesses the value of the

variable located at the address given by its operand. In other words, it refers to

the value of the variable addressed by the given pointer. If (continuing work

with the previous assignment instruction) the ptr variable contains the address

of the balance variable, then during the execution of the instruction

value = *ptr;

 41

the value variable will be assigned the value of the balance variable

pointed to by the ptr variable. For example, if the variable balance contains a

value of 3200, then after the last instruction is executed, the variable value

will contain the value 3200, because this is exactly the value that is stored at

address 100. The purpose of the operator "*" can be expressed by the phrase

"at address". In this case, the previous instruction can be read as follows:

"variable value acquires the value (located) at the address ptr".

include <iostream>

#include <conio>

using namespace std;

int main() {

int balance;

int *ptr;

int value;

balance = 3200;

ptr = &balance;

value = *ptr;

cout << "Баланс дорівнює: " << value << endl;

getch(); return 0;

}

As a result of execution, this program displays the following results on the

screen: The balance is: 3200

The multiplication sign (*) and the at-address operator are denoted by the

same asterisk symbol. These operations are in no way related to each other.

The "*" and "&" operators have higher precedence than any of the

arithmetic operators, except for the unary minus, which has the same

precedence as the pointer operators.

When assigning a value to an area of memory addressed by a pointer, it

(the pointer) can be used on the left side of the assignment statement. For

example, in the process of executing such an instruction (if p is a pointer to an

integer type)

*p = 101;

the number 101 is assigned to the memory area, in p, which is addressed

 42

by the pointer. Thus, this instruction can be read as follows: "put the value

101 at the address p." To increment or decrement a value located in an area of

memory addressed by a pointer, you can use an instruction similar to the

following:

(*p)++;

The parentheses are required here because the "*" operator has lower

precedence than the "++" operator.

Arrays

An array is a finite set of elements of the same type.

The k-dimensional array is declared according to the following format:

<type> <array name> [i1][i2]*…*[ik]

where the name of the array is the correct identifier, i1, i2, ..., in - the

maximum number of array elements for each dimension.

Each index of the array must be written in separate square brackets []. The

number of array indexes is unlimited. By default, the total size of the array

should not exceed one segment (64K). To declare an array larger than 64K, the

huge modifier is specified between the type and the array name.

The array index for each dimension varies from 0 to m-1, where m=1,...,k.

The array type can be specified as:

1) one of the main types (int, char, float, double or synonyms);

2) another array type;

3) a pointer, including a pointer to a function;

4) structure (structure);

5) union.

For example:

int mass[10]; // array of 10 integers

char line[80]; //array of 80 characters

float a[5][4]; //two-dimensional array of 5x4 elements of type float

double b[7][7][7]; // an array of 7x7x7 elements of type double

int *x[10] //array of 10 pointers to type int

When declaring an array, its initialization is allowed. The initial values of the

 43

elements must be separated by commas in curly braces { }. The value of the

elements for each individual dimension can be enclosed in curly brackets,

between which a comma is placed, for example:

int year[12]={31,28,31,30,31,30,31,31,30,31,30,31};

float mas[2][3]={{0.0,0.1,0.2},{1.0,1.1,1.2}};

The last initialization is equivalent to the following:

float mas[2][3]={0.0,0.1,0.2,1.0,1.1,1.2}.

The number of elements cannot be greater than the specified size. If the

number of elements is less than the specified dimension, then the assignment

takes place only for the initial elements, and other elements take null values if

the array is declared as external or static, and take undefined values in other

cases:

static int vec[10]={1,8,3}; / The first three elements will take the specified

values, and the next seven - zero values /

auto float matr[3][4]={{0.0}, {1.0,1.1},{2.0,2.1,2.2}};

/ elements with indices [0][0],[1][0],[1][1],[2][0],[2][1],[2][2] will take the

value and all others – undefined values /.

With explicit initialization of the array, its dimensions may not be specified.

Then the dimension of the array is determined by the number of specified

elements, for example:

int i_array []={4,-2,7,10,-3,5,3}

/* declared and initialized array of seven integers */

When explicitly initializing two-dimensional arrays, the first index can be

omitted, and the second must be specified:

float f_mas[][4]={{1,2,3,4},{5,6,7,8},{9,10,11,12}};

In this example, an array consisting of 3 rows and 4 columns is declared.

This announcement is equivalent to the following one:

float f_mas[][4]={1,2,3,4,5,6,7,8,9,10,11,12};

According to the ANSI standard, an array can be initialized anywhere,

including inside a function for old compilers. To initialize an array in the middle

 44

of a function, it must be declared static:

static float vec[]={5.2,6.3,8.4};

In memory, array elements are placed in a contiguous region, so that the right

index changes first.

An example of placing an array in memory int matrix[2][3]

[0][0] [0][1] [0][2] [1][0] [1][1] [1][2]

0 2 4 6 8 12 байт

The array element is referenced by specifying the name of the array and its

indexes. Indices must be constants, variables, or integer expressions. Each index

is enclosed in separate square brackets, e.g:

і_array[3]; / access to the fourth element of the i_array array /

Another way to access array elements is to use pointers.

The name of one array is a pointer to its null element, for exampleд:

int vec{5};

vec-→vec[0] vec[1] vec[2] vec[3] vec[4]

vec=&vec[0];

vec+i=&vec[i];

*vec=vec[0];

*(vec+i)=vec[i];

According to the declaration of the two-dimensional array int matrix[2][3];

notation matrix[i], where i-0,1, determines the memory location of the i-th line,

and the name of the matrix array determines the pointer to the beginning of the

int matrix array[2][3]. The array name matrix is compatible with the pointer type

to an array of three integers: int (*vec)[3];

pointers to rows Elements

matrix[0] [0][0] [0][1] [0][2]

matrix[1] [1][0] [1][1] [1][2]

The values of the pointers matrix and *matrix are the same, but not

compatible in type. The compatibility and equivalence rules are given below:

matrix=&matrix[0]=matrix[][m];

matrix+i=&matrix[i];

*matrix=matrix[0]=&matrix[0][0];

*(matrix+i)=matrix[i]=&matrix[i][0];

*(matrix+i)+j=matrix[i]+j=&matrix[i][j];

 45

**matrix=*matrix[0]=matrix[0][0];

**(matrix+i)=*matrix[i]=matrix[i][0];

((matrix+i)+j)=*(matrix[i]+j)=matrix[i][j];

Similarly, to declare a three-dimensional array int fx [5][4][8]; the notation

fx[i] specifies the address of the i-th two-dimensional array with dimensions of

4x8 elements in memory, and the notation fx[i][j] specifies the address of the 8-

element j-th row of the i-th two-dimensional sub-array.

Given that the first p indices of the array (p<k) determine the address of the

corresponding subarray, a form similar to the addressing of memory cells

through pointers is allowed for addressing array elements or their pointers:

For example:

 (ір)[name_array [і1][і2]/ *...*/'[і(р-1)]].

ір - variable or integer expression, but not a constant.

For example:

(i)[vec] /* equivalent to addressing vec[i] */

(j)[matrix[i]] /* еквівалентно звертанню matrix[i][j]*/.

When working with arrays, you need to remember that the name of the array

is a constant, so modification operations of the value determined by this constant

are not allowed, for example:

int a[5],y,n,

int *z; / * the following operations are not allowed */

а=у; а++; а+=n; z=&a;

In the C++ language, one cannot assign an entire array to another of the same

type and size. Arrays are copied element by element using loop operators, arrays

of pointers.

In the C language, it is allowed to use arrays of pointers to all data types, for

example:

int r[3];

r[3] - an array containing the addresses of three elements of type int.

To access the value located at the address r[i], it is necessary to use the

operation of dereferencing the indexed pointer *r[i]. Working with an array of

pointers is demonstrated by the following example:

int і;

 46

float x1=1, x2=2, x3=3, sum=0, r[3];

r[0]=&x1;

r[1]=&x2;

r[2]=&х3;

for(i=0;і<3;і++) sum = sum+r[i];

printf("Cyмa = %f\n",sum);

The scanf library function is used to enter array elements, which has the

following format:

int scanf("format string", list of pointers to array elements);

The printf library function is used to output array elements, which has the

following format:

int printf("format string", list of array elements);

The I/O format string must contain specifications for the data list formats.

The format specification must begin with a percent symbol (%)

Код Format

%c Symbol

%d Signed decimal

%i Signed decimal

%е Exponential representation (string letter e)

%Е Exponential representation (capital letter E)

%f A floating point value

%g

Uses the shorter of the two formats: %e or %f (if %e, uses the

lowercase letter e)

%G

Uses the shorter of the two formats: %E or %F (if %e uses a capital

letter e)

%о Unsigned octal integer

%s A string of characters

%u Unsigned decimal integer

%x Unsigned hexadecimal integer (lowercase letters)

%Р Ppointer. The corresponding argument must be a pointer to an integer.

This specifier stores in this whole the number of characters output to

the output stream up to the current moment (before the specifier %n is

detected)

%% Prints the % character

 47

To enter a long integer (long) or real with double precision (double), the

character l is specified before the format symbol. For long double type input, the

L character is specified before the format character.

The format string can include other characters from the ASCII table.

If such characters are included in the format string of the scanf function, then

they must occur in the input stream. If additional characters are included in the

format string of the printf function, they will be placed in the output stream. In

this way, you can display auxiliary messages. An example of input-output of

elements of a one-dimensional array

#include <stdio.h>

int main(){

 float vec[10];

// Ввід

 for(int i=0;i<10;i++)

 scanf("%f",&vec[i]);

// Вивід

 for(int i=0;i<10;i++)

 printf("%g ", vec[i]);

 printf("\n");

return 0;

}

3.3. Work program

3.3.1. Start the IDLE environment.

3.3.2. Make a program algorithm for determining some parameters of one-

dimensional arrays (task 1) according to your option. Draw a block diagram of

the algorithm.

3.3.3. Compile a program for determining some parameters of one-

dimensional arrays (task 2) according to your option.

Report requirements:

Fill the array of task 2 with the input operator.

3.4. Hardware and software

 48

3.4.1. Personal computer.

3.4.2 Software: Visual Studio or Dev-C++

3.5 Questions

3.5.1. How is an array declared?

3.5.2. What are the possible types of arrays?

3.5.3. What will the array look like if the number of elements smaller than

the size of the array is specified during its initialization?

3.5.4. What are the ways to access an array element?

3.5.5. How to copy one array to another?

3.5.6. How to describe an array of pointers?

3.5.7. What is de-referencing for?

3.5.8. How is input-output of arrays carried out?

3.5.9. Name the format specifiers you know.

Task 1

1) Find and print the sum of positive array elements

() ()6 5.0; 2.3; 6.9; 1.1;2.0;6.6 .B = − − −

2) Count and print the number of positive elements that are in even places

() ()8 6.3; 1.0;10.3; 8.8;6.3; 1.1;0.0;0.1 .C = − − − −

3) Print the arithmetic mean of the negative elements of the array:

() ()6 6.3; 2.1;4.2;5.3; 7.2; 4.5 .A = − − −

4) Find the minimum array element () ()7 6.3; 1.6;1.1;0.1; 2.0;2.3;6.3 .B = − −

5)Print the sum of negative elements that are in even positions in the array

() ()17 2.3;4.0; 8.9;6.3;4.9; 7.8; 6.5;5.1;3.8; 4.3; 5.1;7.2 .X = − − − − − −

6)Print the arithmetic mean of the non-negative elements of the array that are in

odd position

() ()10 6.3;0.0; 8.3;7.2;6.1; 4.2;5.7;6.4;5.6; 4.8 .B = − − −

7) Find and print the number of positive array elements

() ()9 1.6;2.1; 3.1;0.0;1.1; 2.2;3.7;8.9;9.2 .C = − −

8) Calculate the positive product of array elements () ()5 1.1; 6.2;0.0;2.3;5.1 .D = −

9) Find the sum of array elements у () ()6 3.5; 6.3;2.1;0.1;5.1; 2.1 ,X = − − the value of

which is less than 0.21.

 49

10) Calculate the product of the modules of the values of the array elements

() ()7 2.2;0.2;3.1;2.1; 3.1;6.1;0.5 .Y = − −

11) Determine the number of array elements () ()5 2.2;3.1; 3.6;0.1;2.1 ,B = − the

value of which is less than 0.99.

12) Determine the number of negative array elements

() ()5 1.2;25.3; 2.3; 3.1;0.0 .D = − −

13) Calculate the product of array elements () ()2,3;4,3; 15,2;1,1; 1,2; 3,3 ,B = − − −

the value of which is greater than 2.0

14) Print the serial numbers of the negative elements of the array

() ()8 7,9;1,0;1,1; 2,2;5,0; 1,1;2,0 .W = − − −

15) Count the number of array elements () ()6 2,1;3,6; 6,3;4,1;2,2; 2,3 ,Y = − − whose

values are greater than 2.3.

16) Calculate the product of array elements () ()5 3,1; 7,8;6,2; 3,3;1,1 ,A = − − which

are greater than -5.4.

17) Calculate the sum of the values of the negative elements of the arra

() ()8 1,2;6,3;0,2; 0,7;1,1;2,3; 3,6;2,2 .X = − − −

18 Determine the positive numbers of array elements

 () ()7 1,1;2,3; 6,4;0,0;2,1;2,3;1,2C = − .

19) Calculate the product of array elements () ()5 1,3;6,3;2,4; 3,6; 2,5A = − − .

20) Determine the minimum array element () ()6 2,1; 3,6; 2,0;0,0; 6,3;1,0X = − − −

and the number of this item

21) Print the number of the first negative element of the array

() ()8 3,2; 6,3;2,0; 3,3; 6,6; 2,2;0;2,1A = − − − − .

22) Determine the number of the maximum element of the array

() ()6 2,3;7,9;12,3; 6,8; 22,3;0,0C = − − .

23) Print the numbers of negative elements of the array

() ()7 2,2; 3,3;2,1; 3,0; 7,1; 5,1;0,0D = − − − − .

24) Find the minimum array element () ()6 21,3;30,5; 6,8;0.3; 1,2;5,3B = − − .

25) Determine the maximum module element of the array

() ()8 3,6 5,3;2,1;0,1; 0,7;5,3;6,6; 2,2C = − − − − .

 50

26) Determine the number of non-negative array elements

() ()7 2,3;2,3;0,0;3,2;6,0; 6,0;3,2D = − − .

27) Count the number of elements in the array

() ()8 6,3;26; 3,6;2,1;0,0;6,6; 7,2;1,1D = − − .

which do not exceed the number 5 in modulus..

28) Calculate the arithmetic mean of array elements

() ()5 3,2;6,3; 3,3;2,3;5,5A = − .

29) Find the number of positive array elements

() ()6 6,2; 3,2;0,0;3,3;2,2; 3,6B = − − .

30) Determine which number has the smallest element of the array

() ()7 3,3;0,0; 3,3; 6,17;6,6;2,1C = − − .

Task 2

Variant

number

Size of

aray

Data

type

Task

1 13 int Calculate the number and sum of even

elements of the array

2 15 float Calculate the arithmetic mean of positive

elements

3 19 int Calculate the factorial of the value of the last

element

4 10 int Calculate the product of elements whose value

is less than 6

5 14 float Calculate the arithmetic mean of odd elements

6 20 float Place array elements in reverse order

7 18 float Calculate the sum of array elements that are

multiples of 3

8 15 int Calculate the sum of elements whose absolute

value does not exceed 10

9 10 int Calculate the arithmetic mean of the minimum

and maximum elements of the array

10 12 int Output the number of elements whose values

11 20 int greater than the value of the first element of

the array

12 8 float Determine the indices of the minimum and

maximum elements of the array

 51

13

15 float Calculate the product of odd array elements

14 13 int Calculate the arithmetic mean of elements

whose value is greater than the value of the

last element of the array

15 15 int Calculate the number of positive elements

whose value is less than 20

16 19 int Calculate the arithmetic mean of elements that

are multiples of 5

17 10 float Determine the minimum of positive elements

18 18 float Calculate the number of positive, negative and

zero elements

19 15 int Calculate the product of single-digit array

elements

20 10 float Calculate the sum of only two-digit elements

21 12 int Calculate the percentage content of positive,

negative and zero elements

22 20 float Check if the array is in ascending order

23 18 int Check if the array is sorted in descending

order

24 15 float Replace all negative elements with minimal

ones

25 10 float Replace all negative elements with minimal

ones

26 12 int Remove the smallest array element from the

array

27 20 int Calculate the number of positive and negative

elements

28 14 float Calculate the sum of only three-digit elements

29 11 int Calculate the arithmetic mean of elements

whose value is greater than the value of the

last element of the array

30 16 float Calculate the sum of array elements whose

values belong to the interval [3, 6]

 52

№4. Developing programs with multidimensional arrays

4.1. The purpose of the work

To study the organization of data of the same type in the form of

multidimensional arrays in the C++ language, their declaration, methods of

accessing elements, and programming processing algorithms..

4.2. Brief theoretical information

Organizing multidimensional arrays

The dimensionality of an array is determined by the number of indices.

Elements of a one-dimensional array (vector) have one index, elements of a

two-dimensional array (matrix, table) have two indices: the first of them is the

row number, the second is the column number. The number of indices in

arrays is unlimited. When placing elements of an array in computer memory,

the rightmost index is changed first, then the rest are changed from right to

left.

A multidimensional array is declared in the program as follows:

<type> <name> [<size1>] [< size 2>] ... [< size N>];

For example

int matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

The first dimension represents the number of rows [2], while the second

dimension represents the number of columns [3]. The values are arranged in row

order and can be visualized as follows:

Accessing elements of a two-dimensional array

To access an element of a two-dimensional array, you need to specify the

row and column index numbers. This instruction accesses the value of the

element in the first row (0) and third column (2) of the matrix array.int

matrix[2][3] = { {1, 4, 2}, {3, 6, 8} };

 53

printf("%d", matrix[0][2]); // output 2

To change the value of an element, refer to the element's index number in

each dimension:

matrix[0][0] = 9;

Example of I/O of elements of a two-dimensional array:

#include <stdio.h>

int main(){

 int i,j,mas[3][4];

 // Ввід

 for(i=0;i<3;i++)

 for(j=0;j<4;j++)

 scanf("%d",&mas[i][j]);

 // Вивід по рядках

 for(i=0;i<3;i++){

 for(j=0;j<4;j++)

 printf(" %d ",mas[i][j]);

 printf("\n");

}

return 0;

Example of working with a matrix in which the maximum and minimum

elements are swapped:

#include <iostream>

using namespace std;

int main(){

 setlocale(0,".1251");

 double a[4][6],min,max;

 int i,j,imin,jmin,imax,jmax;

 cout<<"Введiть матрицю з 4-х рядкiв i 6-ти стовпцiв:"<<endl;

 for(i=0; i<4; i++)

 for(j=0; j<6; j++) cin>>a[i][j];

 54

 min=max=a[0][0];

 imin=jmin=imax=jmax=0;

 for(i=0; i<4; i++)

 for(j=0; j<6; j++)

 {

 if(a[i][j]<min){ min=a[i][j]; imin=i; jmin=j; }

 if(a[i][j]>max){ max=a[i][j]; imax=i; jmax=j; }

 }

 a[imin][jmin]=max;

 a[imax][jmax]=min;

 cout<<"\nМатриця, в якiй помiнянi мiсцями максимальний і

мiнiмальний елементи:"<<endl;

 for(i=0; i<4; i++)

 {

 for(j=0; j<6; j++) cout<<a[i][j]<<"\t";

 cout << endl;

 }

 system ("pause>>void");

 return 0;

}

Functions in C++

Functions are the building blocks of the C++ language, self-contained units

of a program designed to solve specific tasks, usually repeated several times.

The basic form of a function definition is:

type <function name>(list of variables)

 {

commands

 }

The type of a function determines the type of value that the function returns

using the return statement. If the type is not specified, the function defaults to

returning an integer value (of type int). The parameter list consists of a list of

 55

parameter types and names, separated by commas. A function may have no

parameters, but parentheses are required in any case.

The parameter list must specify the type for each parameter. An example of a

valid parameter list is:

f(int х, int у, float z)

Example of an incorrect parameter list:

f(int x, у, float z)

Let's give an example of a function that implements the reduction of a

number a to a natural power b:

float step(float a, int b)

 {

 float i;

 if(a<0) return (-1); /* основа негативна */ а=1;

 for(i=b;i;i--) a*=a;

 return a;

 }

This function returns -1 if the base is negative, and n if the base is non-

negative.

The return operator has two uses.

First, this operator causes an immediate exit from the current function and a

return to the calling program.

Second, this operator can be used to return the value of the function.

It should be noted right away that there may be several return operators in

the function body, or there may be none. In this case, the return to the calling

program occurs after the last operator in the function body is executed.

Another example is a function for finding the largest of two numbers:

max(int a, int b)

 {

 int m;

 if(a>b) m=a;

 else m=b;

 56

 return m;

 }

It is also possible to write this function without using an additional variable:

max(int a, int b)

 {

 if(a>b) return a;

 else return b;

 }

// Можна ще коротше:

max(int a, int b)

 {

 if(a>b) return a;

 return b;

 }

//А можна і так:

max(int a, int b)

 {

 return (a>b)? a: b;

 }

If a function is supposed to return a value but does not, the compiler issues a

warning. All functions that return values can be used in C++ expressions, but

they cannot be used on the left side of an assignment operator, except when

returning a pointer value.

There are some special features to using functions that return pointers.

Pointers are neither of type int nor unsigned int. Their values are memory

addresses of data of a certain type. The function must be described accordingly.

Consider an example of a function that returns a pointer to type char. This

function finds the first space in a string and returns its address.

char* find(char* string)

 {

 int i=0;

 while (siring[i] != ' ')&&(string[i] != '\0') i++;

 57

 if(s[i]) return &s[i]; /* повертає адреса першого пробілу */

 else return NULL; /* повернення нульового покажчика */

 }

When a function does not return any value, it must be declared as a void

function.

You are not required to declare a function as void, in which case it will

default to int and return no value. This will cause a compiler warning, but will

not prevent compilation. However, it is a good practice to declare the return type

of the function..

Function prototypes

A feature of the ANSI C++ language standard is that in order to generate

correct machine code for a function, it must be informed of the return type of the

result, as well as the number and types of arguments, before the first call. For

this purpose, C++ uses the concept of a function prototype. The function

prototype is specified as follows: type <function name>(parameter list);

Using a function prototype is a function declaration (declaration). Most

often, the function prototype completely coincides with the title in the function

description, although this is not always the case. When declaring a function, it is

important for the compiler to know the function name, the number and type of

parameters, and the type of the return value. In this case, the names of the formal

parameters of the function do not play any role and are ignored by the compiler.

Therefore, the function prototype can look like this:

int func(int a, float b, char* с);

or:

int func(int, float, char*);

These two announcements are absolutely equal.

Let's consider an example.

include <stdio. h>

float sqr(float a); /* this is a function prototype, a function declaration

*/

 58

int main()

 {

 float b;

 b=5.2;

 printf(“Квадрат числа %f дорівнює %f", b, sqr(b));

return 0;

 }

float sqr(float a) /* This is a description of the function*/

 {

 return a*a;

 }

The following two examples of using functions will cause a compile-time

error. In the first example, the compile-time error is that the return value does

not match the declared type of the function. C and C++ will automatically

convert the data to another type, but only when possible. An integer type cannot

be automatically converted to a pointer to an integer..

#include <stdio.h> /* The example is incorrect. */

int *sqr(int *i) /* Function prototype */

main()

{

int i;

sqr(&x);

}

int *sqr(int *i) /* Function declaration */

{

return *i=(*i)*(*i);

}

#include <stdio.h>

/* The example is incorrect. */

int sqr(int *i) /* Function prototype */

main()

 59

{

int x=10:

sqr(&x, 10); /* Argument number mismatch */

}

int sqr(int *i)

{

*i=(*i)*(*i);

}

Note that if we fix these programs, the function will return the square of the

number i not through the function value, but through the function parameter.

If the function has no arguments, then when declaring the prototype of such a

function, the keyword void should be written instead of arguments. This should

also apply to the main() function. Its declaration should be of the form void

main(void) or main(void).

#include <stdio.h>

void line_ (void);

main (void)

 {

 line_();

 }

void line_(void)

 {

int i:

for(i=0;i<80;i++) printf("-“);

 }

C++ header files contain prototypes of standard functions that are related to

that header file. Examples of such header files are stdio.h, string.h, conio.h, etc.

Scope and area of visibility

The scope rules of a variable are the rules that determine what data is

available from a given place in the program.

In the C++ language, each function is a separate program block. You cannot

 60

get into the body of a function except by calling this function. In particular, you

cannot use the local goto operator to jump to the body of another function.

From the point of view of the scope of variables, there are three types of

variables: global, local, and formal parameters. Scope rules determine where

each of them can be used.

Local variables are variables declared inside a block, in particular inside a

function. The C++ language supports a simple rule: a variable can be declared

inside any program block. A local variable is available inside the block in which

it is declared. Recall that a block is opened with a curly brace and closed with a

curly brace. The scope of a local variable is the block.

A local variable exists while the block in which this variable is declared is

executed. When you exit the block, this variable (and its value) is lost..

#include < stdio.h>

void f(void);

main(void)

 {

 int i;

 i=1;

 f();

 printf(“B функції main значення i дорівнює %d\n", i);

 }

void f(void)

 {

 int i;

 i=10;

 printf("B функції f() значення i дорівнює %d\n", i);

 }

The example shows that when the function is called, the value of the variable

i declared in main() has not changed.

Formal parameters are variables declared in the function description as its

arguments. Functions can have a number of parameters that are used when

calling functions to pass values to the function body. Formal parameters can be

used in the function body in the same way as local variables, which they

essentially are. The scope of formal parameters is the block that is the body of

 61

the function.

Global variables are variables declared outside of functions. Unlike local

variables, global variables can be used anywhere in the program, but before their

first use they must be declared. The scope of a global variable is the entire

program.

Using global variables has its drawbacks:

• they occupy memory for the entire duration of the program;

• using global variables makes functions less general and makes them more

difficult to use in other programs;

• using external variables causes errors due to side effects. These errors are

usually difficult to find.

4.3. Work program

4.3.1. Run the IDLE environment.

4.3.2. Write the program algorithm (task 1) according to your version. Draw

a flowchart of the algorithm.

4.3.3. Write the program (task 2) according to your version.

Program requirements:

Fill arrays with the input operator.

4.4. Hardware and software

1.4.1. Personal computer.

1.4.2 Software: Visual Studio or Dev-C++

4.5 Questions

4.5.1. Which of the following declarations of two-dimensional arrays are

incorrect and why?

a) int С[1..5, 1..5]; c) double С[1..5][1..5];

b) double C[5][5]; d) int C: [5][5];

4.5.2. How are the elements of two-dimensional arrays placed in the

operating memory?

4.5.3. Write the operator for declaring a matrix of integers S of size 7 by 3?

4.5.4. Is it possible to process a two-dimensional array by organizing the

outer loop by columns and the inner loop by rows?

 62

Task 1

Variant number:

1. In a matrix of real numbers with 5 rows and 4 columns, calculate the

number of positive, negative, and zero elements.

2. In a 4x5 matrix of integers, determine the largest element and its indices.

3. Determine the minimum element of the main diagonal of a square matrix

of size 5x5 and the row number in which it is contained.

4. Interchange the elements of the first row of a 4x4 matrix of real numbers

with the elements of its non-main diagonal.

5. In a 3x5 matrix of integers, replace the negative elements with zeros.

6. Determine the maximum and minimum elements of a 6x6 matrix of real

numbers.

7. Calculate the vector of arithmetic mean values of the elements of the rows

of a 5x4 matrix of real numbers.

8. Calculate the sum of the elements of the non-main diagonal of a 5x5

matrix of integers.

9. For a 5x5 matrix of integers, calculate the transpose matrix.

10. Determine the column number of the 3x6 real number matrix with the

smallest element.

11. Determine the minimum element of the non-principal diagonal of the 5x5

integer matrix and the column number in which it is located.

12. Calculate the vector of sums of row elements of the 7x3 integer matrix.

13. Replace negative elements in odd rows of the 7x4 real number matrix

with zeros, and positive elements with ones.

14. Calculate the sums of the elements of the main and non-principal

diagonals of the 5x5 real number matrix and the difference between these sums.

15. In the 7x5 real number matrix, calculate the sum of all negative elements

of the first four rows.

16. In the 4x5 integer matrix, replace all negative elements with zeros.

17. Calculate the product of the minimum element of a 4x5 integer matrix by

the arithmetic mean of the matrix.

18. In a 6x4 integer matrix, calculate the arithmetic mean of positive

elements.

19. In a 5x4 integer matrix, replace the positive elements in odd rows with 1,

and the negative elements in even rows with 0.

 63

20. In a 6x3 real number matrix, calculate the product of all negative

elements in even rows.

21. In a 3x5 integer matrix, calculate the number of elements that are less

than the arithmetic mean.

22. In a 5x3 real number matrix, replace all elements that are greater than 2.5

with 1.

23. Calculate the vector of sums of the absolute values of the elements of the

rows of a 4x5 real number matrix.

24. In a matrix of integers of size 7x4, determine the smallest element from

the number of positive and the largest from the number of negative and swap

them.

25. Calculate the vector of elements of the main diagonal of a matrix of real

numbers of size 5x5.

26. Calculate the vector of sums of squares of elements of columns of a

matrix of real numbers of size 3x5.

27. In a matrix of integers of size 5x5, swap elements of the main and non-

main diagonals.

28. In a matrix of integers of size 5x5, replace all even elements with zeros.

29. Calculate the difference of the sums of elements of the first row and last

column of a matrix of real numbers of size 4x6.

30. Calculate the vector of sums of elements of the main and non-main

diagonals of a matrix of real numbers of size 6x6.

Task 2

Variant number:

1. From the matrix A(n,n) (n<=6) obtain a new matrix B(n,n) by dividing all

elements of the matrix A by its maximum element in modulus.

2. In the matrix A(6,8) it is necessary to change the row containing the

minimum element to the row containing the maximum element. Assume that

these elements are unique.

3. From the matrix A(m,n) (m<=5, n<6) obtain the numbers a1,....,am, where

a1 is the value of the first positive element of the i-th row.

4. Transpose the matrix A(m,n) (m<=4, n<6) and print the resulting matrix.

5. The coordinates of m vectors are given by the matrix A(m,n) (m<=6, n<7).

It is necessary to calculate the lengths of these vectors, print the values, and

among these find and indicate the number of the vector of the minimum length.

 64

6. Perform such a transformation of the matrix A(m,n) (n<=4) in which all

positive elements are replaced by the sum of the corresponding indices, and

negative ones by the product of the indices.

7. Find the minimum element of the matrix A(m,n) (m<=5) and display it on

the screen. Replace the elements of the matrix that lie below the main diagonal

with the minimum element.

8. In the matrix A(6,6), delete the 4th row and print the resulting matrix.

9. Perform such a transformation of the matrix A(m,n) (m<=5, n<7), in

which the last column will take the place of the first, and all the others will be

shifted one column to the right.

10. The coordinates of n vectors are given by the matrix A(m,n) (m<=5,

n<=6). Calculate the lengths of these vectors, print and plot their values in a one-

dimensional array. Among the elements of the array, find the maximum element

and its number.

11. In the matrix A(3,7), delete the 5th column and print the resulting matrix.

12. The matrix A(m,n) (m<=4, n<=3) contains positive and negative

elements. Formulate two arrays from the elements of this matrix: B - containing

positive elements, and C - negative. Count the number of elements in these

arrays.

13. The integer matrix A(n,n) (n<=5). Find the smallest of the values of the

elements of the column that has the maximum sum of the moduli of the

elements. Specify the column number.

14. Perform such a transformation of the matrix A(m,n) (m<=7, n<=3), in

which the last row is swapped with the first, the penultimate with the second, etc.

Print the transformed matrix.

15. In the matrix B(m,n) (m<=4, n<=6), all elements of which are different.

In each row, the element with the smallest value is selected, then the largest

among these numbers is selected. Display the found element on the screen.

16. Square all odd elements of the matrix A(m,n) (m<=5, n<=4) and

formulate a one-dimensional array from these squares.

17. In the matrix A(m,n) (m<=5, n<=5), replace the element of the main

diagonal with the elements of the side diagonal.

18. In the matrix A(m,n) (m<=5, n<=4), find the sum of the elements that

frame this matrix and swap the minimum element of the left side with the

maximum element of the right side.

19. Make the following transformation of the matrix A(m,n) (m<=5, n<=5).

 65

Replace the elements above the side diagonal with those that are systematic with

respect to the side diagonal;

20. In the matrix A(m,n) (m<=5, n<=5), replace the elements above the side

diagonal with those symmetrical with respect to this diagonal.

21. In the matrix A(m,n) (m<=5, n<=5), replace the elements of the diagonal

adjacent to the main diagonal from above with the element of the diagonal

adjacent to the main diagonal from below.

22. In the matrix A(m,n) (m<=5, n<=4), arrange the last two rows in

descending order.

23. Arrange the elements of the matrix A(m,n) (m<=5, n<=4) above the main

diagonal in ascending order and write them below the main diagonal in rows.

24. Arrange the elements of the matrix A(m,n) (m<=5, n<=4) in descending

order and place them in rows.

25. Perform the following transformation of the matrix A(m,n) (n<=5) in

which all positive elements are replaced by the sum of the corresponding

indices, and negative ones by the difference of the indices.

26. Perform the following transformation of the matrix A(m,n) (m<=5,

n<=5): replace the elements that are above the side diagonal with those that are

symmetric to the main diagonal.

27. In the matrix B(m,n) (m<=5, n<=5), all elements of which are different.

In each row, the element with the largest value is selected, then the smallest

among these numbers is selected. Print the found element.

28. Perform such a transformation of the matrix A(m,n) (m=5, n=6), in which

the last column takes the place of the first, and all the others are shifted one

column to the right

29. In the matrix A(6,6), delete the 3rd row and print the resulting matrix.

30. Perform such a transformation of the matrix A(m,n) (m=8, n=3), in which

the last row is swapped with the first, the penultimate with the second, etc. Print

the transformed matrix.

 66

№5. Developing programs with string variables

5.1. The purpose of the work

Learn to work with text data, gain the knowledge and skills necessary for

programming based on the creation and use of user-defined functions, and learn

to use them in practice in the process of developing programs in the C++

programming language.

5.2. Brief theoretical information

Characters

Character type variables are declared using the char keyword and occupy 1

byte in memory. The char type is an integer type and can be specified with or

without a sign. The method of interpreting char type variables can be specified

implicitly or explicitly. The implicit form of the char type is determined by a

compiler option. In an integrated environment, this option is set using the

Options/Compile/Code Generation menu. The explicit form is determined using

the signed a6o unsigned type modifiers.

Examples of declarations:

char с;

unsigned char t;

signed char v;

The value of a char type variable determines the code of one of the 256

characters of the code table.

If the char type is considered signed; then the most significant bit of the code

determines the sign. In this case, the range of char type values is from -128 to

123. For the unsigned char type, the range of code values is from 0 to 255.

Initialization of char type variables can be done implicitly or explicitly.

Implicitly static and global char variables are initialized with the value '\0'.

Local variables that are not static take on an undefined value.

Explicit initialization of char variables can be done when they are declared or

when using an assignment operation or input functions. A char variable can be

assigned a numeric or symbolic value. A symbolic constant is specified in quotes

 67

either explicitly or by its octal or hexadecimal code, which must be preceded by

the \ character, for example:

char с1='A';

char с1='х41';

char c3,c4=0x41;

In all cases, the variables will take on the value 0х41 (or decimal 65), which,

depending on the context of use, can be interpreted as a number or a symbol

with the corresponding code.

Arrays of characters

A character array is a sequence of char elements located in a contiguous area

of memory. An example of declaring a character array, for example:

char buffer[10];

A character array can contain Latin letters, Cyrillic characters, punctuation

marks, and control characters. Control characters are specified by their

mnemonic designation or ASCII code value, preceded by the \ character.

A character array can be initialized in one of the following ways:

1. By default, global and static arrays are initialized with the character '0';

2. Explicit character-by-character initialization during declaration;

3. Character-by-character initialization using an assignment operation or

character-by-character input.

If the character array is initialized when it is declared, the number of

elements can be specified explicitly, for example:

• char buffer[10]={'T','u','r','b','o',' ','C'};

or implicitly:

• char buffer[]={'T','u','r','b','o',' ','C'};

In the first example, an array of 10 elements is specified. The first 7 of them

will be assigned values, and the following C will take the value '0' if the array is

global or static, and undefined values - in other cases. The number of elements

of the initialization list must not exceed the specified value.

In the second example, the number of elements of the array is determined

 68

implicitly by their list, as a result, an array of 7 characters will be created, which

will take values from the specified initialization list.

The array elements can be accessed using an index or a pointer. An array

index is an integer expression written in square brackets after the array name.

The index of the first element of an array is 0. For example, to access the

character 'r' of a previously defined array, you must write buffer[2].

When accessing characters using an index, it is necessary to remember that

the compiler does not control its permissible value. Incorrect use of the index

can lead to an access outside the array without issuing a warning or error

message.

Considering that the array name is a constant pointer to the first byte of this

array (element buffer[0]), to access the -th element of the character array, you

can use the * operation, for example; *(buffer+i)

Character-wise initialization using the assignment operation is performed by

accessing individual elements of the array in one of the following ways:

buffer[1]='U';

*(buffer+2)='R';

Element-by-element input of a character array is organized using a loop

operator, for example:

for(i=0;i<10;i++)

getchar(buffer[i]);

To input characters, you can use specially designed library functions getchar,

getch, getche; or the scar formatted input function.

Character arrays are also called character buffers. Special functions are

designed to work with character buffers, the prototypes of which are given in the

mem.h file.

Strings

A string in C is an array of characters that ends with the character '\0'

(NULL). Strings are declared in the same way as character arrays, for example::

char line[20]; /* a string of 20 characters is declared */

 69

In fact, 19 characters can be written to such an array, and the 20th character

is the end-of-line character '\0', for which memory must be reserved. Each

character of the string occupies 1 byte in memory. The maximum length of the

string depends on the selected memory model.

Initial initialization of character strings can be done in two ways. In the first

method, characters are specified as array elements, for example::

charstr[6]= {'w','h','i','l','e','\0'};

With this method of declaring a string, the character '\0' must be specified

explicitly at the end of the array of elements. If the number of characters listed in

curly braces is less than the specified size, the string is padded from the right to

the specified length with '\0' characters.

If the '\0' character is not specified at the end of the initialization list, then not

a string, but an array of characters will be formed in memory.

With the second initialization method, the string is not divided into

individual characters, but is specified in quotes, for example:

char str[] = "while";

With this initialization method, the compiler will add the '\0' character to the

end of the string.

The string of characters can be empty. Such a string consists of only one '\0'

character and is initialized as follows:

char str[]="";

An array character is referenced by its serial number, for example:

char c, str[]="while";

c=str[2]; //c='i'

The name of a character string is a pointer to a zero element (str ==&str[0]),

that is, it takes a constant value assigned to it at the compilation stage.

Therefore, modification of this value is not allowed, for example, the operation

str++ is not allowed.

To declare a character string, you can use a pointer, for example:

char *str1 = "while";

or char *str1;

str1="while";

 70

The variable str1 contains the address of the string "while". Unlike the

previous description of a string as an array of characters, its modification is

allowed, for example, the operation str1++ is allowed and the new value of the

variable str1 points to the next element.

The expression *(srt1+i) provides access to the ith element of a character

string, for example:

c=*(str1+2) /*с='i' */

Character strings can be combined into arrays of arbitrary size. In practice,

the most common work is with two-dimensional character arrays (one-

dimensional arrays of character strings).

Depending on the description, character strings are stored in a continuous

memory area as two-dimensional character arrays or in different memory areas

as separate strings. The first way of description:

charmasstr[4][10]={"green", "red", "white", "blue"};

defines a rectangular character array. All four strings will have the same

length. Short strings are padded on the right with '\0' characters to the specified

length (up to 10 characters).

Omitting the second index, we will have the addresses of each string, for

example, the entry masstr[2] defines a pointer to the string "white", and the entry

*(masstr[2]+j) defines the jth character of this string (j = 0,...,9).

To access characters, you can also use the method typical of numeric arrays,

for example, the entry masstr[0][1] defines the character 'r' of the string "green".

The second way of description:

char *prtstr[4]={"green", "red", "white", "blue"};

defines an array of 4 pointers to strings of different lengths. The string values

may not be stored consecutively, but in different memory areas.

To access the jth character of the ith string, you can use the following

expression; *(ptrstr[i]+j).

Organization of standard output and input of character data.

Formatted data output

It is implemented using the printf function, which has a variable number of

arguments. The prototype of the function is given in the table above.

 71

Function reference:

printf ("format string", arg1,arg2,...);

The format (control) string is used to specify the number and types of

arguments and can include:

1. regular characters that are displayed on the display screen;

2. data conversion specifications, each of which displays the value of the

next argument from the list on the screen,

3. control character constants:

- \a - causes a sound signal;

- \n - transition to a new line;

- \b - return to the left position;

- \r - transition to the beginning of the current line;

- \f - transition to a new page;

- \t - horizontal tab;

- \v - vertical tab;

- \ddd - octal character code;

- \’ - apostrophe;

- \xddd - hexadecimal character code;

- \" - double quotes;

- \0 - null character (empty);

- \\ - backslash;

The conversion specification has the following format:

%[alignment][width][precision]conversion character

Square brackets are not specification characters, but only indicate that this

field can be omitted. The conversion specification begins with a % sign and ends

with a conversion character (format), between which there can be:

1. The "-" sign (minus), which indicates that the converted parameter should

be left-aligned in its field (by default it is right-aligned);

2. A string of numbers - the minimum width of the field. If the value of the

variable exceeds the width of the field, as many characters as necessary are

printed;

3. A colon;

4. A string of numbers - the maximum number of characters that must be

printed for the char type. The arguments of the printf function can be variables,

constants, expressions, function calls. The values of the arguments must

 72

correspond to given specification.

Character output

Conversion specification: %[-][width]s

The string characters are output until the '\0' character is encountered, or to

the specified precision. If the string length is greater than the specified precision,

the rest of the string is discarded.

This is done using the scanf function, which can have a variable number of

arguments. The scanf function is mainly intended for reading a set of data of

different types. Function format:

sсаnf("format string", arg1, arg2, ...);

A characteristic feature of this function is that its arguments must be pointers

to values. For each argument in the format string, its own conversion

specification is specified.

The width determines the number of characters that should be read from the

input stream and assigned to the character array. If width is omitted, a single

character is entered. Blank characters can be entered with this specification.

Example:

char a[5], b; /* Input stream: 1234567890 */

scanf("%5c", a);

a[4]='\0'; /* Result a = 1234\0 */

scanf("%c", &b); /* Result b = 5 */

Character string input

Conversion specification: %[*][width]s

Width specifies the maximum length of the input string. Strings in the input

stream must be separated by blank characters. Leading blank characters are

ignored. Reading occurs up to the first blank character (space, tab, newline), or

until the specified width is reached. A '\0' character is appended to the end of the

string in memory to fill the declared length.

Example:

char a[5], b[6]; /* Input stream; 1234567890 */

 73

scanf("%3s", a); /* Result a = 123\0\0 */

scanf("%5s", b); /* Result b = 45678\0 */

Unformatted output functions

Character output

The putchar function is used in a program to display a character on the video

terminal screen.

Function reference: putchar(character);

After the character is output, the cursor remains in the output line. If the

output line is full, then when the next character is output, the transition to the

beginning of a new line occurs. Examples of character output:

char ch='b';

putchar('a'); /* а */

putchar('\n'); /* transition to a new line */

putchar('\007'); /* sound signal */

putchar(ch); /*b */

putchar(getchar()); /* output of the entered character */

Character string output

The puts function is used to output a character string. Function reference:

putchar(string pointer);

The puts function stops outputting characters if it encounters the '\0'

character. This character is not output. The string of characters output by the

puts function always starts with a new line on the screen. Examples of using the

puts function:

char str1 [] = "abcdefgh";

char *str2 = "1234567890";

puts("Message Output");

puts(str1); /*abcdefgh*/

puts(str2); /* 1234567890 */

puts(&str1[4]); /*efgh*/

puts(str2+6); /* 7890 */

 74

Unformatted Input Functions

Character Input

The getchar, getch, and getche functions are used to input characters. The

prototype of the getchar function is in the stdio.h file, and the prototypes of the

getch and getche functions are in the conio.h file.

The getchar function is designed to read a character from the keyboard,

display it on the screen, and transfer it to the program. The function implements

buffered input - the character is transferred to the program after it is typed on the

keyboard and the <Enter> key is pressed.

The variable to which the function value is assigned must have the char type.

For example:

char ch;

ch=getchar();

while((ch=getchar())!='*') {/* loop body */}

The getch function implements unbuffered input - the character is transferred

to the program immediately after it is typed on the keyboard without pressing the

<Enter> key. A characteristic feature of this function is also that the entered

character is not displayed on the screen.

Calling the getch function:

variable = getch();

The getche function also implements unbuffered input of a character, but

with its display on the screen. Calling the getche function:

variable = getche();

If the getchar(), getch() or getche() functions encounter an end-of-file code in

the input stream, they return the EOF character. The EOF variable declaration is

given in the standard file stdio.h. The end-of-file character is simulated by

simultaneously pressing the two "Ctrl+Z" keys (when entering a character from

the keyboard). This can be used as a condition for exiting the loop if the entered

character is used in the loop body, for example:

 75

char ch;

while((ch=getchar())!=EOF)

{ }

Entering character strings

The gets function is used to enter a character string. This function reads

characters from the input stream until it encounters the newline character '\n',

which is formed when the <Enter> key is pressed. The '\n' character is not

included at the end of the line, and instead the '\0' character is automatically

formed, for which an additional byte of memory must be reserved.

Before using the gets function, you must allocate memory for the string of

characters. Calling the gets function:

gets(pointer to string);

For example:

char name[81];

gets(name);

The following example demonstrates incorrect use of the gets function:

static char *name;

gets(name);

Although the function argument is specified correctly as a pointer to a

character type, no memory is reserved for the string of characters. Placing a

string in memory at this address can overwrite other information and, as a result,

lead to unpredictable consequences.

Unlike the scanf function, the gets function allows you to enter empty

characters, for example, spaces. The gets function returns a pointer to the

entered string of characters. If the data is read incorrectly or if the end of the file

is encountered in the input stream, the gets function returns a NULL pointer, for

example:

while(gets(name)!==NULL) {}

Processing character strings

 76

When processing character strings, it is most often necessary to perform

operations such as determining the length of a string, copying, concatenating,

and comparing strings. Functions are provided for working with strings, the

prototypes of which are given in the string.h file.

The length of a string is determined using the strlen() function, which has the

following prototype:

unsigned strlen(char *str);

The function returns the number of characters in the string up to the null

character terminating the string '\0'. Example:

char str[20]="Character string";

int k;

k=strlen(str);

The variable k will take a value equal to the number of characters in the

string str, i.e. k=14.

When performing a copy operation, it is necessary to correctly define the

string that receives character data. This string can be defined as a character

buffer in static or dynamic memory.

In static memory, a string is declared as an array of characters, for example;

char buf[20]. Dynamic memory for a string is allocated using the malloc() or

calloc() functions:

char *buf;

buf=(char *)malloc(20);

In both cases, it is necessary to provide for memory allocation for the end-of-

string character '\0'. Copying strings is done using the library function strcpy(),

the prototype of which looks like:

char *strcpy(char *str1, char *str2);

This function copies the string str2 into the string str1. Both strings are

specified by their own pointers. The function returns a pointer to the receiving

string str1. The length of the string str1 must be sufficient to store the string str2,

 77

including the null character at the end of the string. For example;

char str1 [15];

char str2[]='GCC MinGW";

strcpy (str1, str2);

The strcat() function concatenates two strings:

char *strcat(char *str1, char *str2);

The str2 string will be appended to the end of str1 string. The length of str1

string must be sufficient to accommodate the result of the concatenation,

including the string termination character '\0'. Example;

char str1 [20]="Turbo ";

char *str2="Ci";

strcat(str1,str2);

The result of the strcat() function will be the string str1, which will take the

value of the character constant "Turbo Ci"

The strcmp() function is used to compare strings, which has the following

prototype:

int strcmp(char *str1, char *str2);

This function compares the strings str1 and str2 and returns an integer less

than 0 if str1<str2; equal to 0 if str1=str2; greater than 0 if str1>str2. Strings are

compared character by character from left to right until the first mismatch of

character codes. When comparing, it is necessary to remember that in the ASCII

table, lowercase letter codes are greater than uppercase letter codes. Example:

char str1[]="Turbo C" char str2[]="TURBO C++"

if(strcmp(str1,str2)) put("The first string is greater than the second");

Other functions for processing character strings are given in Table 5.1-5.3.

 78

Table 5.1. Functions for working with strings _#include <string.h>

Function Prototype Action

atof

double atof(char *str);

Converts the string str to a double-precision

real number. The conversion is performed up

to the first illegal character or the '\0'

character. If it cannot be converted, it returns

0

atoi

int atoi(char*str);

Converts the string str to a decimal integer.

If the number exceeds the int range, it

returns the 2 lower bytes. If it cannot be

converted, it returns 0

atol long atol(char*str); Converts the string str to a long decimal

integer

ecvt

char *ecvt(double v, int

dig, int *dec, int *sign);

Converts the real v to a string: dig - the

number of digits of the number to be

converted to a string, dec - the position of

the decimal point from the beginning of the

string (if dec<=0, then the position of the

decimal point is to the left of the number),

sign is {0,1} - the sign of the number. The

'\0' character is appended. Returns a pointer

to a string

fcvt

char *fcvt(double v, int

dig, int*dec, int*sign);

Same as ecvt, only dig - the number of digits

after the point

gcvt

char *gcvt(double v, int

dig, char *buf);

Converts a real v to a string. Unlike ecvt()

and fcvt(), it places the string in a previously

declared buffer buf. dig is the number of

characters in the string. The resulting string

contains the fixed-point or floating-point

representation of the number, depending on

whether the number can fit in dig positions

itoa

char *itoa(int v, char

*str, int baz);

Converts an integer v to a string str in the

baz number system (2<=baz<=36). Returns a

pointer to a string

ltoa

char *itoa(long v, char

*str, int baz);

Converts a long integer v to a string of

characters str

strcat

char *strcat(char *sp,

char *si);

Assigns the string si to the string sp

 79

strch

char *strchr(char *str,

char c);

Finds the first occurrence of the character c

in the string str.

strcmp

int strcmp(char *str1,

char *str2);

Compares the strings str1 and str2. Result:

<0 if str1<str2; =0 if str1=str2; >0 if

str1>str2

strcmpi

int strcmpi(char *str1.

char *str2);

Compares the strings str1 and str2 in a case-

insensitive manner for literal characters.

Returns the same value as strcmp..

strcpy

char *strcpy(char

*sp,char *si);

Copies string si to string sp

strcspn

int strcspn(char *str1,

char *str2);

Determines the length of the first segment of

string str1 that contains characters that are

not included in the set of characters of string

str2

strlen

unsigned strlen(char

*str);

Calculates the length of string str

striwr

char *strlwr(char *str);

Converts uppercase letters in string to

lowercase letters

strncat

char *strncat(char *sp,

char *si, int kol);

Assigns kol characters of string si to string

sp

 trncmp

int strncmp(char *str1,

char *str2, int kol);

Compares kol of the first characters of

strings str1 and str2. The result is similar to

the strcmp function

strncmpi

int strncmpi(char *str1,

char *str2, int kol);

Compares the first kol characters of the

strings str1 and str2 without taking into

account the case of literal characters. The

result is similar to the strcmp function

strncpy

char *strncpy(char *sp,

char *sp. int kol);

Copies kol characters of the string si to the

string sp

strpbrk

char *strpbrk(char *str1,

char *str2);

Finds the first occurrence of an arbitrary

character from the set of characters of the

string str2 in the string str

strrchr

char *strrchr(char *str,

char c);

Finds the last occurrence of the character c

in the string str

strset

char*strset(char*str,

intch):

Writes the character ch to all positions of the

string str. Returns a pointer to str

Strnset

char *strset(char *str, int

ch, zise t n);

Writes the character ch to the first n

positions of the string str. Returns a pointer

to str. The '\0' character is not erased if n >

strien(str)

 80

Strspn

int strspn(char *str1,

char *str2);

Finds the length of the first segment of the

string str1 that contains characters from the

set of characters included in the string str2

Strstr

char *strstr(char *str1,

char *str2);

Returns a pointer to the element of the string

str1 that is the beginning of the substring

str2, and NULL if str2 is not included in str1

Strupr

char *strupr(char *str);

Converts lowercase letters of the string str to

uppercase

Ultoa

char *ultoa(unsigned

long v, char

*ctr, int baz); n+-

Converts an unsigned long integer v to a

string of characters

Table 5.2. Character validation and conversion functions #include <ctype.h>

Function Prototype Action

Isalnum

int isalnum(int c);

Returns a value other than 0 if c is a letter

(A-Z,a-z) or a digit (0-9), and 0 otherwise

Isalpha

int isalpha(int c);

Returns a value other than 0 if c is a letter

(A-Z,a-z), and 0 otherwise

Isascii

int isascii(int c);

Returns a value other than 0 if the character

code of c is from 0 to 127, and 0 otherwise

Iscntrl

int iscntrl(int c);

Returns a value other than 0 if c is a control

character (Ox7F or 0x00-0x1 F), and 0

otherwise

Isdigit

int isdigit(int c);

Returns a value other than 0 if c is a digit (0-

9), and 0 otherwise

Isgraph

int isgraph(int c);

Returns a value other than 0 if c is a

character with a graphic designation (0x21-

Ox7E), and 0 otherwise

Slower

int islower(int c);

Returns a value other than 0 if c is a

lowercase character, and 0 otherwise

ispnnt

int isprint(int c);

Returns a value other than 0 if c is a printed

character (0x20-Ox7E). and 0 otherwise

Ispunct

int ispunct(intc);

Returns a value other than 0 if c is a control

character

Toupper int toupper(int c); Converts the letter c to uppercase

 81

Table 5.3. Function for working with buffers (character arrays)

#include<mem.h> or #include<string.h>

Function Prototype Action

memcpy void *memcpy (void

*dest,

void *src, size_t n);

Copies a block of n bytes from src to dest.

Buffers must not overlap. Returns a

pointer to dest.

memccpy void *memccpy (void

*dest,

void *src, int c,

size_t n);

Copies a block of n bytes from src to dest.

Buffers must not overlap. Copying

continues until:

1. the character c is encountered, which is

also copied to dest. Returns a pointer to

the next byte after the character c;

1. 2. until n bytes are copied. Returns a

NULL pointer

memmove void *memmove

(void *dest,

void *src, size_t n);

Copies a block of n bytes from src to dest.

Buffers may overlap. Returns a pointer to

dest

movmem void *moymem (void

*src, void *dest,

unsigned n);

Copies a block of n bytes from src to dest.

Buffers may overlap. Returns a pointer to

dest

movedata void movedata

(unsigned srcseg,

unsigned srcoff,

unsigned destseg,

unsigned destoff,

size_t n);

Copies n bytes from srcseg: srcoff to

destseh: destoff

memcmp int memcmp (void

*s1, void *s2, size_t

n);

Compares the first n bytes of two buffers

s1 and s2 in lexicographical order.

Returns: <0 if s1<s2; ==0 if s1==s2; >0 if

s1>s2

memicmp int memicmp (void

*s1, void *s2, size_t

n);

Same as memcmp, but case insensitive.

memchr void *memchr (void

*s, int c, size_t n);

Searches for the character c in the first n

bytes of buffer s. Returns a pointer to the

character c. If the character is not found,

returns NULL

 82

5.3. Work program

5.3.1. Run the IDLE environment

5.3.2. Write the algorithm for the program for task 1 according to your

version.

5.3.3. Write the program for task 1 according to your version.

5.3.4. Write the algorithm for the program for processing a text array

(Appendix 2) according to your version.

5.3.5. Write the program for processing a text array according to your

version.

Requirements for programs

• input data to be entered by the input operator (tasks 1, 2);

• print the results of the programs according to the task.

5.4. Hardware and Software

5.4.1. Personal computer.

5.4.2. Software: IDLE.

5.5. Questions

5.5.1. How to declare a character type variable?

5.5.2. What format specifier is used for input and output of characters?

5.5.3. What are character arrays? How to declare them?

5.5.4. How to refer to a specific element in a character array?

5.4.5. What is a character string? How to declare it?

5.5.6. What is an array of character strings? How to declare it?

5.5.7. What are the functions of unformatted input-output of character

strings?

Task 1.

The results of the examination session of 1st year students are presented in

the following table

 Прізвище Інформат

ика

Вища

матем.

Фізика

Програму

вання

1. Іванчук С.О. 4 3 3 4

2. Панченко І.А. 5 4 4 5

 83

3. Заєць О.М. 3 4 4 4

4. Вельбицький П.О. 4 3 3 3

5. Сидоренко В.Р. 2 3 3 2

6. Кравченко З.І. 3 5 4 5

7. Якубів Р.Н. 5 4 4 3

8. Зоренко П.М. 4 2 3 3

9. Берестяк Г.С. 4 5 5 5

10. Дячик Н.С. 5 5 4 4

Variants:

1. Print a table containing the numbers, surnames and the number of “5”,

“4”, “3”, “2” for each student in the group, and also count the total number of

“5”, “4”, “3”, “2” in the group.

2. Print a table containing the numbers, surnames, grades and average score

of those students in the group whose average score is more than 4, and also

count the number of such students in the group.

3. Print a table containing the numbers, surnames and grades of students who

have at least one “3”, and also count the number of such students in the group.

4. Print a table containing the numbers, surnames and grades of students who

do not have any “5”. Count the number of such students.

5. Print a table containing the numbers, surnames and grades of each student,

and at the end indicate the average score of the group in each discipline.

6. Print a table containing the numbers, surnames, grades and average score

of each student in the group.

7. Print a table containing the numbers, surnames and grades of students in

higher mathematics, and also calculate the average score of the group in this

subject.

8. Print a table containing the names and grades of those students who have

the highest and lowest average score in the group.

9. Print a table containing the numbers, surnames, grades and average score

of students in the group whose average score is less than 4.

10. Print a table containing the numbers, surnames, grades of students who

have only good and excellent grades.

11. Print a table containing the numbers, surnames, grades and the number of

“3” in the grades of each student.

 84

12. Print a table containing the numbers, surnames and grades of those

students who received good and excellent grades in computer science, and also

count the number of such students.

13. Print a table containing the numbers, surnames and grades of those

students who received a satisfactory or unsatisfactory grade in higher

mathematics, and also count the number of such students.

14. Print a table containing the numbers, surnames and examination grades

of students. At the end, indicate the discipline with the highest average score.

15. Print a table containing the numbers, surnames and grades of students

who received at least one unsatisfactory grade.

16. Print the number of “2”, “3”, “4”, “5” from each discipline.

17. Print a table containing the numbers, surnames and the number of “2”,

“3”, “4”, “5” in the grades of each student.

18. Print a table containing the numbers, surnames and grades of students in

the subjects “Higher Mathematics” and “Informatics”.

19. Print a table containing the average exam scores of a student in each

subject.

20. Print a table containing the numbers, surnames, grades and the number of

positive grades of each student.

21. Print a table containing the numbers, surnames and grades of students

who have positive grades in computer science. Print the number of such

students.

22. Print a table containing the numbers, surnames and grades of students

who have positive grades in higher mathematics. Print the number of such

students.

23. Print a table containing the numbers, surnames and grades of students

who have grades “good” and “excellent” in computer science. Print the number

of such students.

24. Print a table containing the numbers, surnames and grades of students

who have positive grades in physics. Print the number of such students.

25. Print a table containing the numbers, surnames and grades of students

who have grades “good” and “excellent” in programming. Print the number of

such students.

26. Print a table containing the names and grades of those students who have

the highest and lowest average score in the group.

27. Print a table containing the numbers, surnames, grades and average score

 85

of students in the group whose average score is less than 3.

28. Print a table containing the numbers, surnames, grades of students who

have only excellent grades.

29. Print a table containing the numbers, surnames, grades, and the number

of “2”s in the grades of each student.

30. Print a table containing the numbers, surnames, and grades of those

students who received good and excellent grades in programming, and also

count the number of such students.

Task 2

Variants:

1. Given a text array A(10). Find and print the elements of the smallest

length. Print this element, its serial number and length (number of characters).

2. In the text array B(12), find the element with the largest length, print it

together with the number and length.

3. In the text array C(15), find the sum of the lengths of the elements with the

smallest and largest length.

4. From the elements of the text array B(20), form arrays whose elements

have the same length.

5. In the text array A(15), swap the elements with the smallest and largest

lengths.

6. In the text array A(13), swap the following: the 1st element with the 13th,

the 2nd with the 12th, etc. Print the original and transformed arrays.

7. Given an array A(10), print the elements in ascending order of their

length.

8. Array B(10) contains the students' last names. Sort it alphabetically.

9. Given a text array: paper, water, tower, canal, height, volume. Merge the

2nd and 4th elements of the array and put the resulting text variable in second

place. Delete the 4th element of the array.

10. Given a text array B(12). Sort it in descending order of the lengths of its

elements.

11. Given a numeric array of grades: 3, 4, 4, 5, 2, 3, 3, 4. Form a text array of

grades by replacing: 3 with satisfactory, 4 with good, etc. Print the resulting

array.

12. Given an array of text variables B(10). Create an array C(10) containing

the elements of the array B(12), increased by 5 each

 86

13. The condition is the same as in 12 to calculate the average score of each

student.

14. Given a text array A(10). Print its elements in ascending order of their

lengths

15. Given a text array A(10). Print its elements in descending order of their

lengths.

16. In the text array A(8) of data containing 8 words, calculate the sum of the

lengths of the elements that are in even places.

17. In the text array F(10), calculate the sum of the lengths of the first 7

elements.

18. In a text array of 9 elements, find the sum of the lengths of elements from

the 2nd to the 6th.

19. Given a text array B(12). Sort it in descending order of the lengths of its

elements and write the resulting array to the array A$(12).

20. Given an array of text variables B(10). Create an array c(10) containing

the elements of the array B(12) written in reverse order.

21. Given a text array A(10). Find and print the elements of the longest

length. Print this element, its serial number and length (number of characters).

22. In a text array C(15), find the difference in the lengths of the elements

with the smallest and largest length. Print these elements.

23. Given a text array B(12). Sort it in ascending order of the lengths of its

elements.

24. In a text array of 10 elements, find the sum of the lengths of elements

from the 3rd to the 9th.

25. Given an array of text variables B(10). Create an array C(10) containing

the elements of the array B(12), increased by 3 each.

26. In the text array A(15), swap the elements with the smallest and largest

lengths.

27. In the text array A(15), swap the following: the 1st element with the 15th,

the 2nd with the 14th, etc. Print the original and transformed arrays.

28. Given a text array A(20). Find and print the elements with the largest

length. Print this element, its ordinal number and length (number of characters).

29. In the text array B(14), find the element with the largest length, print it

along with the number and length.

30. In the text array F(12), calculate the sum of the lengths of the first 6

elements.

 87

№6. Developing programs with file variables. Working with files

6.1. The purpose of the work

Learn functions and algorithms for organizing work with files.

6.2. Brief theoretical information

Structure

In the C++ programming language, a structure is a collection of variables

united by a common name, which provides a convenient means of storing

related data in one place. A structure is a collection of different data types,

since they consist of several different, but logically interconnected

Programming in C++. For these same reasons, structures are sometimes called

composite or conglomerate data types. A structure is a combination of one or

more objects (variables, arrays, pointers, other structures). Like an array, it is

a collection of data, but differs from it in that its elements must be addressed

by name, and its different elements do not necessarily have to belong to the

same type.

Structures are convenient to use where various data related to the same

object must be combined. For example, a high school student is characterized

by the following data: last name, first name, date of birth, class, age.

A structure is declared using the struct keyword, followed by its type, a list

of elements enclosed in curly braces. It can be represented in the following

general form:

struct type {

element type 1 element name 1;

element type n element name n;

};

An element name can be any identifier. Several identifiers of the same

type can be written in one line, separated by commas.

struct date {

int day;

int month;

 88

int year;

};

Following the curly brace that ends the list of elements, variables of this

type can be written, for example:

struct date {...} a, b, c;

In this case, the corresponding memory is allocated.

The resulting type name can be used to declare an entry, for example:

struct date day;. Now the variable day has the type date.

Structures can be nested one above the other. For better understanding of

the structure, we use Cyrillic (Ukrainian letters) in identifiers; this cannot be

done in C++.

For example:

struct STUDENT {char LastName [15];

firstName [15];

struct DATA{ int DAY, MONTH, YEAR;} BIRTHDATE;

int class, age;};

The DATA type above includes three elements: Day, Month, Year, which

contain integer values (int).

The STUDENT record includes the elements: LASTNAME [15];

FIRSTNAME [15]; BIRTHDATE, CLASS, AGE. LASTNAME [15] and

NAME [15] are character arrays with 15 components each. The BIRTHDATE

variable is represented by the component element (nested structure) DATE.

Any date of birth corresponds to the day of the month, month, and year. The

CLASS and AGE elements contain integer values (int). After introducing the

DATE and STUDENT types, you can declare variables whose values belong

to these types.

For example:

struct STUDENT STUDENTS [50];

The STUDENTS array consists of 50 elements of type STUDENT.

In the C++ language, it is allowed to use arrays of structures; records can

consist of arrays and other records.

To refer to a separate component of the structure, you must specify its

name, put a period and immediately write the name of the desired element

after it.

 89

For example:

STUDENTS [1]. CLASS = 3;

STUDENTS [1]. BIRTHDAY. DAY = 5;

STUDENTS [1]. BIRTHDAY. MONTH = 4;

STUDENTS [1]. BIRTHDAY. YEAR = 1979;

The first line indicates that the 1st student is in the third grade, and the

following lines indicate his date of birth: 5.04.79.

Each type of structure element is defined by the corresponding declaration

line in curly braces. For example, the STUDENTS array has the type

STUDENT, and the year is an integer. Since each record element belongs to a

specific type, its compound name can appear wherever values of that type are

allowed.

Input/output libraries and file handling in C++

Input/output operations in C are organized using library functions. It should

be noted that the C++ system follows the ANSI standard, also called buffered or

formatted input/output.

At the same time, the C++ system supports another input/output method, the

so-called UNIX-like, or unformatted (unbuffered) input/output.

We will pay attention to the first method - the ANSI standard.

The C++ language also supports its own object-oriented input/output.

It is important to understand what a file and a stream are and what the

difference between these concepts is. The C input/output system supports an

interface that does not depend on what physical input/output device is actually

used, that is, there is an abstract level between the programmer and the physical

device. This abstraction is called a stream. The method of storing information on

a physical device is called a file.

Although devices are very different (terminal, disk drive, magnetic tape,

etc.), the ANSI C standard associates each device with a logical device called a

stream. Since streams are independent of physical devices, the same function can

write information to disk, to magnetic tape, or to the screen.

There are two types of streams in C: text and binary.

A text stream is a sequence of characters. However, there may not be a one-

to-one correspondence between the characters fed into the stream and those

 90

output to the screen.

A binary stream is a sequence of bytes that uniquely correspond to what is on

an external device.

A file in C is a concept that can be applied to everything from a file on disk

to a terminal. A stream can be associated with a file using the file open

statement. Once a file is open, information can be transferred between it and

your program.

Not all files are the same. For example, from a file on disk, you can select the

5th record or replace the 10th record. At the same time, information can only be

transferred to a file associated with a printer device sequentially in the same

order. This illustrates the main difference between streams and files: all streams

are the same, which cannot be said about files.

The file opening operation associates a stream with a specific file. The file

closing operation breaks this association. If a stream was opened for output, then

when the file closing operation is performed, the corresponding buffer is written

to an external device. If the program terminates normally, all files are

automatically closed.

Each stream associated with a file has a control structure called FILE. It is

described in the header file stdio.h.

File pointer

The link between a file and a stream in the ANSI C I/O system is the file

pointer. A file pointer is a pointer to information that specifies various aspects of

a file: name, status, and current position. A file pointer specifies the name of a

file on disk and its use in the stream associated with it. A file pointer is a pointer

to a structure of type FILE, which is defined in the STDIO.H file. The following

functions are also defined in the STDIO.H file:

Function Function action

fopen() Open a file

fclose() Close a file

putc() Write a character to a stream

getc() Read a character from a stream

fseek() Change the file position pointer to the specified location

fprintf() Format write to a file

 91

fscanf() Format read from a file

feof() Returns true if the end of the

file is reached

ferror Returns false if an error is detected

fread() Reads a block of data from a stream

fwrite() Writes a block of data to a stream

rewind() Sets the file position pointer to the beginning

remove() Destroys a file

To declare a file pointer, the operator

FILE *fput;

Let's consider the functions listed above in more detail.

The fopen() function performs two actions: first, it opens a stream and

associates a file on disk with that stream; second, it returns a pointer associated

with that file. The function prototype is

FILE *fopen(char filename, char mode);

where mode is a string containing the mode in which the file is opened. The

possible file opening modes are listed below:

Mode Action

"r" Open for reading

"w" Create for writing

"a" Open for appending to an existing file

"rb" Open binary file for reading

"wb" Open binary file for writing

"ab" Open binary file for appending

"r" Open file for reading and writing

"w+" Create file for reading and writing

"a+" Open file for appending or creating for reading and writing

"r+b" Open text file for reading and writing

"w+b" Create binary file for reading and writing

"a+b" Open binary file for appending or creating for reading and writing

"rt" Open text file for reading

"wt" Create text file for writing

"at" Open text file for appending

"r+t" Open text file for reading and writing

"w+t" Create text file for reading and writing

 92

"a+t" Open text file for appending or creating for reading and recording

If you are going to open a file named test for writing, then just write

FILE* fp;

fp=fopen("test","w");

However, it is recommended to use the following method to open the file:

FILE *fp;

If((fp=fopen("test",””w””))==NULL)

 {

 puts("He можу відкрити файл \n");

 exit(1);

}

This method detects an error when opening a file. The NULL constant is

defined in stdio.h. The exit() function we used has a prototype in the file

stdLIB.h

void exit(libint val);

and terminates the program, and returns the size of val to the operating

system (the calling program). Before terminating, the program closes all open

files, frees buffers, and displays all necessary messages on the screen. In

addition, there is an abort() function with a prototype of

void abort(int val);

This function immediately terminates the program without closing files or

freeing buffers. It sends the message "abnormal program termination" to the

stderr stream.

If the file is open for writing, the existing file is destroyed and a new file is

created. When opening a file for reading, it is required that it exists. In the case

of opening for reading and writing, the existing file is not destroyed, but is

created if it does not exist.

Writing a function to a stream is done by the putc() function with the

prototype:

int putc(int ch, FILE *fptr);

If the operation was successful, the written character is returned. In case of

 93

an error, EOF is returned.

The getc() function reads a character from a stream opened for reading by

the fopen() function. The prototype of the getc() function is

int getc(FILE *fptr);

Historically, getc() returns an int value. The same can be said about the ch

argument in the description of the putc() function. In both cases, only the low-

order byte is used. The function returns the EOF character if the end of the file is

reached or an error occurs while reading the file. To read a text file, you can use

the construction

ch=getc(fptr);

while(ch! =EOF) { ch=gelc(fptr) };

When reading a binary file, it will not be possible to determine the end of the

file, just like when reading a text file. The feof() function with the prototype

int feof(FILE *fptr) is used to determine the end of a text file.

The function returns "true" if the end of the file has been reached, and "zero"

if not. The following construction reads a binary file to the end of the file:

while(! feof(fptr)) { ch=getc(fptr); }

This construction can also be used for text files. The fclose() function,

declared as

int fclose(FILE * fptr);

returns "zero" if the file closing operation was successful. Any other value

indicates an error. If the file closing operation is successful, the corresponding

data from the buffer is read into the file, the file control unit associated with the

stream is freed, and the file becomes available for further use.

If an error occurs when reading or writing a text file, the corresponding

function returns EOF. To determine what actually happened, the ferror()

function with the prototype

int ferror(FlLE *fptr);

which returns "true" if the last file operation was performed and "false"

otherwise. The ferror() function must be executed immediately after each file

operation, otherwise its error message may be lost.

The rewind() function sets the file position indicator to the beginning of the

file specified as the function argument, the prototype of this function is

void rewind(FILE *fptr);

 94

Borland C++ defines two more buffered input/output functions: putw() and

getw(). These functions are not part of the ANSI C language standard. They are

used to read and write integers. These functions work exactly like putc() and

getc().

The ANSI C language standard also includes the fread() and fwrite()

functions used to read and write blocks of data:

unsigned fread(void *buf,int bytes, int c, FILE *fptr);

unsigned fwriie(void *buf,int bytes, int c, FILE *fptr);

where buf is a pointer to the memory area from which information will be

exchanged; c is the number of record units, each with a length of bytes bytes to

be read (written); bytes is the length of each record unit in bytes; fptr is a pointer

to the corresponding file.

Reading and writing to a file does not have to be done sequentially; it can be

done directly by accessing the desired file element using the fseek() function,

which sets the file position pointer to the desired location. The prototype of this

function is

int fseek(FILE *fptr,long numbytes, int origin);

where fptr is a pointer to the corresponding file; numbytes - the number of

bytes from the starting point to set the current position of the file pointer, origin -

one of the macros defined in stdio.h:

Starting point Macro Value

Start of file

Current position

End of file

SEEK SET

SEEK CUR

SEEK END

0

1

2

When a program starts executing, five specified streams are automatically

opened. The first three are standard (stdin), standard output (stdout), and

standard error (stder). They are normally associated with the console, but they

can be redirected to another stream. You can use stdin, stdout, and stder as file

pointers in all functions that use the FILE type.

In addition, C++ opens stdprn and stdaux streams, associated with the printer

and the computer's serial port, respectively. These streams are opened and

closed automatically.

The ANSI standard also includes the functions fprintf() and fscanf(), which

work similarly to the functions printf() and scanf(), except that they are

 95

associated with files on disk. The prototypes of these functions are, respectively

int fprintf(FILE *fptr, const char*string,...);

int fscanf(FILE *fptr, const char*string,...);

where fptr is a pointer to a file returned by the fopen() function.

The remove() function removes the specified file. The prototype of this

function is:

int remove(char *filename);

The function returns 0 if the operation is successful and non-zero otherwise.

Since the C language is related to the UNIX operating system, a second

input/output system has been created in the C++ system. This system complies

with the UNIX standard. The function prototypes are in the io.h file. These

functions are:

read() - reads a data buffer,

write() - writes to a data buffer,

open() - opens a file,

close() - closes a file,

fseek() - searches for a specified byte in a file,

unlink() - destroys a file.

When writing programs for working with files, it is necessary to remember

that:

• in the program that performs operations of reading from a file or

writing to a file, a pointer to the FILE type must be declared;

• in order for the file to be accessible, it must be opened, specifying for

what action the file is opened: reading, writing or updating data, as well

as the file type (binary or text);

• when working with files, errors are possible, therefore it is

recommended to check the result of file operations using the ferror

function (fopen());

• reading data from a text file can be performed using the fscanf()

function, writing – fprintf();

• after finishing work with the file, it must be closed (fclose() function);

An example of writing to a file and reading from a file an array of

structures that describe information about students in a group and store the

student's name, age, and group name.

 96

#include <iostream>

#include <stdio.h>

using namespace std;

const int size = 10; // константа, розмір масивів

struct Anketa{ // оголошення структури, що описує анкету

студента

 char name[20];

 int age;

 char group[10];

} studArray[size], studArray2[size]; // оголощення двох масивів

структур

int main(int argc, char** argv) {

 FILE *fp;

 //заповнюємо масив структур

 for (int i=0; i<size; i++){

 cout<<"Name = ";cin>>studArray[i].name;

 cout<<"Age = "; cin>>studArray[i].age;

 cout<<"Group = ";cin>>studArray[i].group;

 }

 // Відкриваємо файл для запису.

 if ((fp=fopen("balance", "w"))==NULL){

 printf("can't open file"); return 1; }

 // Одним викликомзберігаємо весь масив studArray.

 fwrite(studArray, sizeof studArray,1,fp);

 fclose(fp);

 // Відкриваємо файл для зчитування.

 if ((fp=fopen("balance", "r"))==NULL){

 printf("can't open file");

 return 1;

 }

 // Одним "махом" зчитуємо весь масив studArray2.

 fread(studArray2, sizeof studArray2,1,fp);

 // Відображаємо вміст масиву.

 for (int i=0; i<size; i++){

 cout<<"Student "<<i<<" "<<studArray2[i].name;

 97

 cout<<" "<<studArray2[i].age<<"

"<<studArray2[i].group<<endl;

 }

 fclose(fp); return 0;

}

6.3. Work program

6.3.1. Start the IDLE environment.

6.3.2. Create an algorithm for a program for creating and reading text files

according to your version.

6.3.1. Write a program for task 1 according to your version. Use an array

of structures to describe the information in the file.

Program requirements

Enter input data using the input operator; display the result of program

execution according to the task.

6.4. Hardware and software

6.4.1. Personal computer.

6.4.2. Software: IDLE

6.5. Questions

6.5.1 What input/output methods does C++ support?

6.5.2. What is a file and a stream?

6.5.3. What types of streams do you know?

6.5.4. What input and output functions do you know?

6.5.5. In which header files are the prototypes of input/output functions

located?

6.5.6. What functions perform input/output of a string of characters?

6.5.7. What is a file pointer, its definition?

6.5.8. List the main functions of working with files.

6.5.9. What file opening modes do you know, how are they set?

6.5.10. What is the purpose of the exit() function?

6.5.11. What function is intended for closing files?

6.5.12. What functions are intended for reading and writing data blocks.

6.5.13. What function establishes access to a specific file element?

 98

6.5.14. What is a structure?

Task 1

Variant number:

1. Create a file “BOOK” that contains information about the books in your

library. The information should include the author’s last name, book title,

publisher, and year of publication. Using the generated file, print out information

about books published by the “Prosvita” publishing house.

2. Create a file that contains information about household refrigerators:

name of the refrigerator, cost, volume of the refrigerator compartment,

manufacturer. Using the generated file, print out information about refrigerators

that cost more than 55,000 hryvnias.

3. During a football game, a file is created that includes the player’s last

name and the number of points scored during the game. Using the generated file,

print out the last names of the 3 most productive players on the team.

4. Create a file that contains information about trains that go to Kyiv (train

number, full name, travel time). Using the generated file, print out information

about trains whose travel time does not exceed 6 hours.

5. Generate a file containing information about trains that

depart from Zdolbuniv station (including transit trains): train number,

destination station, departure time, travel time. Using the generated file, print out

information about trains that go to Lviv.

6. Generate a file containing information about students who were born in

the summer (June, July, August).

7. Create a file “stud”, which has the following structure: student’s last

name, year of birth, gender. Print, using the file, a list of male students and

indicate their age. At the end of the list, print the average age of the students.

8. Create a file “EXAM” based on the results of the examination session

(three exams). Information about students is entered in symbolic form in the

following order: last name **N1**N2**N3, where N is the score. Using the file,

print the results of the session in the form of a table. Provide for printing the

table header with the names of the disciplines.

9. Record the ski race protocol in the file “SCI”. For each participant,

enter: last name, time of participation in the race (hour, minute, second). Using

the generated file, print the names of the participants who met the standards

(time less than 30 minutes).

 99

10. Create a file “CAR”, which contains information about car owners: last

name, brand, color. Using the created file, print out information about owners

who have gray “Audi” cars.

11. Create a file containing data about books in your personal library:

author’s last name, book title, publisher, year of publication, number of pages.

Using the created file, print out information about books published by the “Mir”

publishing house, and also calculate the total number of such books.

12. Create a file containing information about tape recorders: brand, its

cost, class. Using the created file, print out information about first-class tape

recorders.

13. Create a file - a telephone directory. The information should contain the

subscriber’s last name, first name and patronymic, phone number. Print out the

entire directory.

14. Create a file “FRIEND” from the last names and dates of birth of your

friends. Using the generated file, print the names of those born in winter.

15. chess players participate in a chess tournament. Create a file that

includes the names and game results (win - 1, draw -1, loss - 0). Using the

generated file, process the results of the championship and print the names of the

teams that took the prize places and the number of victories of each team.

16. teams participate in the football championship. Create a file of teams

and match results (win - 2 points, draw -1, loss - 0). Using the generated file,

process the results of the championship and print the names of the teams that

took the prize places and the number of victories of each team.

17. In the attendance log, students’ missed classes are noted every day for

each subject. Create a file that includes the last name and date of attendance for

one subject (1 - present, 0 - absent) by each student in the group. Using the

created file, create a list of those students who have more than 5 absences.

18. Create a file that includes the last names and grades of students during

the semester in the discipline “Computer Engineering”. Using the created file,

print the last names of those students whose average grade in the discipline is 4.

19. 20 sports journalists were asked to name the 3 best football players of

the season. Create a file that includes the last names of the football players, the

number of points scored by each journalist (3 - first place, 2 - second place, 1 -

third place). Using the created file, identify the 3 best players.

20. Create a file that includes the names and positions of teachers who

teach the discipline “Computer Engineering” at all faculties of the institute.

 100

Using the created file, print the names of those teachers that begin with the letter

“B”.

21. Create a file that contains the names and first names of students in your

group. Using the created file, print the names of those students that begin with

the letter “K”.

22. Create a file that contains the names and initials of teachers who teach

in your group and the corresponding subjects. Print the names of teachers from

the Department of Electrical Engineering and Automation.

23. Create a file that contains the results of your certification. Using the

created file, print the subjects in which you received a “5”. If you did not receive

any five, then print the subjects in which you received a grade of “4” or “3”).

24. Create a file “Journal”, which contains information about the library’s

journals. The information should include the author’s last name, article title,

journal title, publisher and year of publication. Using the generated file, print out

information about journals published by the publishing house “NUVGP file”.

25. Create a file containing information about laptops: manufacturer’s

name, cost, screen diagonal. Using the generated file, print out information

about laptops costing over 25,000 hryvnias.

26. Create a file “GROUP” from the last names and dates of birth of

students in the group. Using the generated file, print out the last names of those

born in the summer.

27. In the attendance log, students’ missed classes are noted daily for each

subject. Create a file that includes the last name and date of attendance for one

subject (1 - present, 0 - absent) by each student in the group. Using the generated

file, create a list of students who have more than 10 absences.

28. Create a file that includes the names and grades of students during the

semester in the discipline “Higher Mathematics”. Using the generated file, print

the names of those students whose average score in the discipline is 3.

29. Protocol of the swimming competition in the file “Competition”. For

each participant, enter: last name, time of participation in the competition

(minutes, seconds). Using the generated file, print the names of participants who

met the standards (time less than 2 minutes).

30. Create a file “CAR”, which contains information about car owners: last

name, make, color. Using the generated file, print information about owners who

have “Ford” cars.

 101

№7. Developing programs with custom classes. Working with classes

and objects

7.1. The purpose of the work

Formation of skills in working with classes, algorithms for their declaration and

processing. Acquire object-oriented programming skills.

7.2. Brief theoretical information

Class

The main difference between C++ and C is the ability to process a new

data type - class. A class is a user-defined data type (variables of any type, other

classes or pointers), which is created to describe an abstract set of objects -

members of a class. The idea of a class is to combine data and algorithms for

processing them. Data are called class fields, algorithms - methods, and the

actual combination is encapsulation. Methods process fields and external data, in

fact, they implement the idea of a class. Classes have the inheritance property,

which ensures that the descendant class (hereinafter - derived class) uses the

fields and methods of the base class (ancestor, parent class). Each class can have

an arbitrary number of descendants, which makes it possible to create

hierarchical inheritance trees. A descendant can overlap some methods of the

ancestor, and then a method with the same name for different classes will be

executed differently. This is called method polymorphism.

Encapsulation

Creating a new class is similar to creating a new structure:

class <class name>

{

<access specifier>:

<field type 1> <field names 1>;

<field type N> <field names N>;

<class method declarations or descriptions>;

};

 102

Class methods are functions that are defined for fields or external variables.

In general, the concept of a class resembles the concept of a structure in

C++, with the exception of a number of points: - it contains a number of

specifications for accessing class objects; - as a rule, it includes elements -

functions that specify the rules for processing class objects; - special functions -

a constructor and a destructor - are used to create and destroy class objects.

Unlike the fields of a structure, which are always accessible, members and

methods in a class can have different levels of access.

Access specifiers are described as follows:

Access specifier Description

private Accessibility only for class methods

protected Available only for class methods and derived class

methods

public Accessibility for any external function

The access specifier may be absent in the class description. In this case, the

private specifier is active by default, unless explicitly specified otherwise. Note

that a structure is completely similar to a class, except that its fields and methods

are public by default. You cannot inherit descendant classes from structures.

For example, let's create a TPoint class that will contain the coordinates of

a point and the following methods: lighting, extinguishing, and moving the point.

The description of the TPoint class looks like this:

class TPoint

{ protected:

int x,y; // Координати

public:

TPoint(int a, int b); // Ініціалізує поля координат числами а і b

void On() // Рисує точку поточним кольором

{Draw(getcolor());}

void Off() // Витирає точку - малює її кольором фону

{Draw(getbkcolor());}

virtual void Draw(int color) // Рисує точку кольором color

{putpixel(x, у, color);}

 103

// Переміщає точку на екрані на dx вправо і на dy вниз

void Move (int dx, int dy);

};

The TPoint function creates an instance of a class and fills its fields with

specific values. Such a class method is called a constructor. A constructor

always has a class name. The meaning of the virtual keyword in the description

of the Draw() method will be explained below.

Several constructors can be defined in a class, which differ in the list of

parameters. When creating class objects, a constructor with the corresponding

number and type of input parameters will be called (constructor overloading).

A constructor may or may not have input parameters. A constructor that

does not have input parameters is called a default constructor.

A class may or may not have an explicit constructor. Then the system

automatically allocates memory and initializes the object in a standard way. The

standard procedure does not take into account the features of the class, therefore

it may be incorrect and lead to errors in the program.

A destructor is a function-method of a class that is responsible for correctly

releasing memory when an object is destroyed. The destructor always has a class

name, preceded by the "~" symbol. If the destructor is not defined in the

program, it is generated automatically at the program compilation stage.

Local objects are deleted by the destructor when they go out of scope, and

global objects - after the main() function is completed. The destructor, if

necessary, can also perform any other actions - outputting the final values of data

elements or text messages when debugging the program.

Constructors and destructors cannot return values, and therefore there is no

result type in their description.

Note that it is advisable to change the values of class fields using methods.

For example, you can change the location of a point using the Move method.

Outside of the class description, the method header looks like this:

<class name>::<method name>(<list of formal parameters>);

Let's describe the methods of the created class:

TPoint::TPoint(int a, int b)

 104

{

x = a; y = b;

} void TPoint::Move(int dx, int dy)

{

Off();

x+=dx; y+=dy;

On();

}

A variable (object) of a class is declared similarly to other classes:

TPoint n(12,24), m(100,200);

A class method is called like this:

<object name>.<method name>(<list of actual parameters>);

You can declare and use a Point instance of the TPoint class, for example,

like this:

TPoint Point(50,50);

Point.On();

Point.Move(35, 70);

Point.Of();

 or using dynamic variables:

TPoint* PointPtr = new Point(100,100);

PointPtr->On();

PointPtr->Move(35, 70);

PointPtr->Off();

Operation overloading

A special operator method is defined for classes, namely:

 105

<type>operator<symbol>(<formal parameters>)

{<method body>}

In this case, all arithmetic operations, assignment commands, assignment

commands combined with arithmetic operations, and various pairs of

parentheses can be used as symbols, for example: operator+, operator/=,

operator=, operator(), etc. The rules for describing your own operator methods

are similar to the rules for creating regular functions or methods.

Using the TPoint class and operator(), draw 1000 points randomly placed on

the screen.

#include <graphics.h>

#include <conio.h>

#include <stdlib.h>

class TPoint

{

protected: int x, у;

public:

TPoint(int а = 0, int b = 0)

{

x = а; у = b;

}

void On()

{Draw(getcolor());}

void Off()

{Draw(getbkcolor());)

virtual void Draw(int color)

{putpixel(x, у, color);)

TPoint& operator()(int i,int j)

{

x = i,y = j;

return *this;

}

};

void main()

{

 106

int gdriver = DETECT, gmode, errorcode;

initgraph(&gdriver, &gmode,"");

TPoint P;

randomize();

for(int і = 0; і < 1000; і++) P(random(i), random(i)).On();

getch();

closegraph();

}

In this program, we use operator() to set the coordinates of a point. To be

able to use, for example, the commands P(30,80).On() or P(100,200).Off(),

operator() must be of type Tpoint. Therefore, in the description of the operator-

method operator(), we use the reference TPoint&. The return command must

return an instance (variable value) of type TPoint. Since at the time of the class

description, the name of the variable of this class is unknown, in C++ there is a

special keyword this - a pointer to this variable.

Example of operator overloading

A program for working with complex numbers. The members of the class are

the real and imaginary parts of a complex number. The methods of the class are:

displaying a complex number on the screen; a constructor for initializing

complex numbers; a destructor; calculating and outputting the modulus of a

complex number; calculating and outputting the argument of a complex number.

To initialize a complex number, an overloaded constructor has been created:

complex() initialization of a complex number of the form a +ia (if the

parameter in parentheses is not specified, the complex number 1+i is initialized

by default);

complex(double, double) initialization of a complex number of the form a a

+ib.

The destructor ~complex() has also been created, although its use is not

mandatory for our class of problems.

To work with complex numbers, overloaded operations have been described:

bool operator ==(complex) comparison of two complex numbers;

complex operator +(complex) addition of two complex numbers;

 107

complex operator -(complex) subtraction of two complex numbers;

complex operator *(complex) multiplication of two complex numbers;

complex operator /(complex) division of two complex numbers;

complex operator =(complex) assignment operation for complex numbers;

void operator ++() prefix increase by 1 of the real part;

void operator ++(int) postfix increment by 1 of the imaginary part;

void operator --() prefix decrement by 1 of the real part;

void operator --(int) postfix decrement by 1 of the imaginary part.

#include <iostream>

#include <math.h>

#include <windows.h>

#define pi 3.1415926

using namespace std;

class complex {

private:

 double x;

 double y;

public:

 complex();

 complex(double, double);

 ~complex();

 double modul();

 double argument();

 void show_complex();

 void operator++();

 void operator++(int);

 void operator--();

 void operator--(int);

 complex operator+(complex);

 complex operator-(complex);

 108

 complex operator*(complex);

 complex operator/(complex);

 complex operator=(complex);

 bool operator==(complex);

};

bool complex::operator==(complex chislo)

// Порівняння двох комплексних чисел

{

 if (x == chislo.x && y == chislo.y) {

 return true;

 }

 return false;

};

complex complex::operator+(complex a)

//Додавання

{

 complex temp;

 temp.x = x + a.x;

 temp.y = y + a.y;

 return temp;

};

complex complex::operator-(complex a)

//Віднімання

{

 x = x - a.x;

 y = y - a.y;

 return *this;

};

complex complex::operator*(complex a)

//Множення

{

 x = x * a.x - y * a.y;

 109

 y = y * a.x + x * a.y;

 return *this;

};

complex complex::operator/(complex a)

//Ділення

{

 x = x * a.x + y * a.y;

 y = y * a.x - x * a.y;

 return *this;

};

complex complex::operator=(complex a)

//Операція присвоєння

{

 x = a.x;

 y = a.y;

 return *this;

};

//Префіксне збільшення на 1 дійсної частини

void complex::operator++()

//Префіксне збільшення на 1 дійсної частини

{

 x++;

};

void complex::operator--()

//Префіксне зменшення на 1 дійсної частини

{

 x--;

};

void complex::operator++(int)

//Постфіксне збільшення на 1 уявної частини

{

 110

 y++;

};

void complex::operator--(int)

//Постфіксне зменшення на 1 уявної частини

{

 y--;

};

double complex::modul()

{

 return pow(x * x + y * y, 1 / 2.0);

};

double complex::argument()

{

 return atan2(y, x) * 180 / pi;

};

void complex::show_complex()

{

 if (y >= 0)

 cout << x << "+" << y << "i" << endl;

};

complex::complex()

//Конструктор 1

{

 x = 1;

 y = 1;

};

complex::complex(double x0, double y0)

//Конструктор 2

{

 x = x0;

 y = y0;

 111

};

complex::~complex()

 //Деструктор

 {};

int main()

{

 SetConsoleOutputCP(1251);

 SetConsoleCP(1251);

 /*Ввід комплексного числа c1 за допомогою конструктора 1 */

 complex c1;

 cout << "Комплексне число с1=\t";

 c1.show_complex();

 /*Ініціалізація числа c2 за допомогою конструктора 2 */

 complex c2(-1.0, 2.0);

 cout << "Комплексне число с2=\t";

 c2.show_complex();

 cout << endl;

 c2++;

 cout << "Комплексне число с2 після префіксної операції ++

=\t";

 c2.show_complex();

 ++c2;

 cout << "Комплексне число с2 після постфіксної операції ++

=\t";

 c2.show_complex();

 c2 = c2 - c1;

 cout << "Комплексне число с2 після віднімання віднього с1=\t";

 c2.show_complex();

 cout << endl;

 complex c3;

 112

 c3 = ((c2 + c1) / (c2 + c2)) * c1;

 cout << "Обчислення виразу c3=((c2+c1)/(c2+c2))*c1 : с3=\t";

 c3.show_complex();

 cout << "Порівняння чисел с2 та с3 -\t";

 if (c2 == c3)

 cout << "Числа рівні \n";

 else

 cout << "Числа не рівні між собою\n";

 cout << "Модуль комплексного числа с3=\t" << c3.modul() <<

endl;

 cout << "Аргумент комплексного числа с3=\t" <<

c3.argument();

 return 0;

}

7.4. Work program

7.4.1. Start the programming environment.

7.4.2. Write a program to solve the problem according to your.

Program requirements

Create a class according to the version. Supplement the class with

overloaded constructors (one - without parameters, initializes the class fields

with default values, e.g. 0, the second - parameterized, initializes the class fields

with data entered by the user from the keyboard) and a destructor (displays a

message about the destruction of the object).

7.4. Hardware and software

7.4.1. Personal computer.

7.4.2. Software: IDLE.

7.5. Questions

7.5.1. What are class fields?

7.5.2. What are class methods?

 113

7.5.3. What properties do classes have?

7.5.4. What is class inheritance?

7.5.5. What is method polymorphism?

7.5.6. How is operator overloading implemented in C++?

7.5.7. What is the purpose of a class constructor?

Task 1

Variant number:

1. Create a class of fractions. The members of the class are the numerator

and denominator. The methods of the class are: inputting a fraction from the

keyboard; outputting a fraction to the screen; calculating and outputting the

value of the fraction. Supplement the class with overloaded operations "+", "-",

"*", "/". Write a program that demonstrates working with the class.

2. Create a class of vectors. The members of the class are the Cartesian

coordinates of the beginning and end of the vector in space. The methods of the

class are: inputting a vector from the keyboard; outputting a vector to the screen;

calculating and outputting the length of the vector. Supplement the class with

overloaded operations "+", "-". Write a program that demonstrates working with

the class.

3. Create a class of matrices of size 3x3 . The members of the class are the

elements of the matrix. The methods of the class are: inputting a matrix from the

keyboard; outputting a matrix to the screen; calculating and outputting the

determinant of the matrix. Add the class with overloaded operations "+", "-".

Write a program that demonstrates working with the class.

4. Create a class of segments on a plane. The members of the class are the

coordinates of the ends of the segment. The methods of the class are: entering a

segment from the keyboard; displaying the segment on the screen; calculating

and displaying the length of the segment on the screen. Add the class with

overloaded operations "+" (adding segments according to the rules of adding

vectors), "-" (subtracting segments according to the rules of subtracting vectors).

Write a program that demonstrates working with the class.

5. Create a class for working with time within a day. The members of the

class are hours, minutes and seconds. The methods of the class are: entering time

from the keyboard; displaying time on the screen; calculating and displaying the

time remaining until the end of the day. Add the class with overloaded

 114

operations "+", "-". For all operations, provide for checking whether the

obtained value is outside the permissible limits. Write a program that

demonstrates working with the class.

6. Create a class for working with a circle. The members of the class are

the radius of the circle and the coordinates of its center. The methods of the class

are: entering a circle from the keyboard; displaying a circle on the screen;

calculating the area of the circle and the circumference of the circle and

displaying the result on the screen. Supplement the class with overloaded

operations "*" (multiplying the radius by a number); "/" (dividing the radius by a

number). Write a program that demonstrates working with the class.

7. Create a class of rectangles. The members of the class are the lengths of

the sides of the rectangle. The methods of the class are: entering a rectangle

from the keyboard; displaying a rectangle on the screen; calculating the

perimeter and its area and displaying the result on the screen. Supplement the

class with overloaded operations prefix ++ increases the lengths of the sides of

the rectangle by 1; prefix -- decreases the lengths of the sides of the rectangle by

1. Write a program that demonstrates working with the class.

8. Create a class of triangles. The members of the class are the lengths of

the sides of the triangle. The class methods are: inputting a triangle from the

keyboard; outputting a triangle to the screen; calculating the perimeter and area

and outputting the result to the screen. Supplement the class with overloaded

operations prefix ++ increases the lengths of the sides of the triangle by 1; prefix

-- decreases the lengths of the sides of the triangle by 1. Write a program that

demonstrates working with the class.

9. Create a class for working with dates. The members of the class are the

year, month, and day of the month. The class methods are: inputting a date from

the keyboard; outputting a date to the screen; calculating and outputting the time

of year corresponding to a given date. Supplement the class with overloaded

operations "+" (adding years, months, and days, respectively); "-" (subtracting

years, months, and days, respectively). For all operations, provide for checking

whether the resulting value is outside the permissible limits. Write a program

that demonstrates working with the class.

10. Create a class of matrices of size 4x4 . The members of the class are its

elements. The methods of the class are: inputting a matrix; outputting a matrix to

the screen; calculating and outputting the maximum element of the matrix to the

screen. Supplement the class with overloaded operations "+", "-". Write a

 115

program that demonstrates working with the class.

11. Create a class of points. The members of the class are the coordinates

of a point on a plane. The methods of the class are: entering a point from the

keyboard; displaying the coordinates of a point on the screen; calculating and

displaying the number of the quadrant of the coordinate system in which the

point is located. Supplement the class with overloaded operations "+" (adding

the corresponding coordinates of two points); "-" (subtracting the corresponding

coordinates of two points). Write a program that demonstrates working with the

class.

12. Create a class of polynomials of dimension 4. The members of the class

are the coefficients of a polynomial. The methods of the class are: entering the

coefficients of a polynomial; displaying the polynomial on the screen;

calculating and displaying the value of a polynomial for a given value x.

Supplement the class with overloaded operations "+" (term-wise addition of

polynomials); "-" (term-wise subtraction of polynomials). Write a program that

demonstrates working with the class.

13. Create a class of triads of numbers. The members of the class are three

real numbers. The methods of the class are: entering three numbers; displaying

numbers on the screen; calculation and output of the largest and smallest

number. Supplement the class with overloaded operations "+" (term-wise

addition of triads of numbers); "-" (term-wise subtraction of triads of numbers).

Write a program that demonstrates working with the class.

14. Create an ellipses class. The members of the class are the lengths of the

semiaxes of the ellipse. The methods of the class are: inputting an ellipse from

the keyboard; outputting the ellipse to the screen; calculating the area and

perimeter of the ellipse and outputting the result to the screen. Supplement the

class with overloaded operations "+" (adding the corresponding semiaxes of the

ellipse); "*" (multiplying the semiaxes of the ellipse by a number). Write a

program that demonstrates working with the class.

15. Create a class of points in space. The members of the class are the

Cartesian coordinates of a point. The methods of the class are: inputting a point

from the keyboard; outputting the coordinates of a point to the screen;

calculating and outputting the polar coordinates of a point. Add the class with

overloaded operations "+" (point coordinates are added); "-" (point coordinates

are subtracted). Write a program that demonstrates working with the class.

16. Create a class of fractions. The members of the class are the numerator

 116

and denominator. The methods of the class are: inputting a fraction from the

keyboard; outputting a fraction to the screen; calculating and outputting the

value of the fraction. Supplement the class with overloaded operations "+", "-",

"*", "/". Write a program that demonstrates working with the class.

17. Create a class of vectors. The members of the class are the Cartesian

coordinates of the beginning and end of the vector in space. The methods of the

class are: inputting a vector from the keyboard; outputting a vector to the screen;

calculating and outputting the length of the vector. Supplement the class with

overloaded operations "+", "-". Write a program that demonstrates working with

the class.

18. Create a class of matrices of size 3x3 . The members of the class are the

elements of the matrix. The methods of the class are: inputting a matrix from the

keyboard; outputting a matrix to the screen; calculating and outputting the

determinant of the matrix. Add the class with overloaded operations "+", "-".

Write a program that demonstrates working with the class.

19. Create a class of segments on a plane. The members of the class are the

coordinates of the ends of the segment. The methods of the class are: entering a

segment from the keyboard; displaying the segment on the screen; calculating

and displaying the length of the segment on the screen. Add the class with

overloaded operations "+" (adding segments according to the rules of adding

vectors), "-" (subtracting segments according to the rules of subtracting vectors).

Write a program that demonstrates working with the class.

20. Create a class for working with time within a day. The members of the

class are hours, minutes and seconds. The methods of the class are: entering time

from the keyboard; displaying time on the screen; calculating and displaying the

time remaining until the end of the day. Add the class with overloaded

operations "+", "-". For all operations, provide for checking whether the

obtained value is outside the permissible limits. Write a program that

demonstrates working with the class.

21. Create a class for working with a circle. The members of the class are

the radius of the circle and the coordinates of its center. The methods of the class

are: entering a circle from the keyboard; displaying a circle on the screen;

calculating the area of the circle and the circumference of the circle and

displaying the result on the screen. Supplement the class with overloaded

operations "*" (multiplying the radius by a number); "/" (dividing the radius by a

number). Write a program that demonstrates working with the class.

 117

22. Create a class of rectangles. The members of the class are the lengths of

the sides of the rectangle. The methods of the class are: entering a rectangle

from the keyboard; displaying a rectangle on the screen; calculating the

perimeter and its area and displaying the result on the screen. Supplement the

class with overloaded operations prefix ++ increases the lengths of the sides of

the rectangle by 1; prefix -- decreases the lengths of the sides of the rectangle by

1. Write a program that demonstrates working with the class.

23. Create a class of triangles. The members of the class are the lengths of

the sides of the triangle. The class methods are: inputting a triangle from the

keyboard; outputting a triangle to the screen; calculating the perimeter and area

and outputting the result to the screen. Supplement the class with overloaded

operations prefix ++ increases the lengths of the sides of the triangle by 1; prefix

-- decreases the lengths of the sides of the triangle by 1. Write a program that

demonstrates working with the class.

24. Create a class for working with dates. The members of the class are the

year, month, and day of the month. The class methods are: inputting a date from

the keyboard; outputting a date to the screen; calculating and outputting the time

of year corresponding to a given date. Supplement the class with overloaded

operations "+" (adding years, months, and days, respectively); "-" (subtracting

years, months, and days, respectively). For all operations, provide for checking

whether the resulting value is outside the permissible limits. Write a program

that demonstrates working with the class.

25. Create a class of matrices of size 4x4 . The members of the class are its

elements. The methods of the class are: inputting a matrix; outputting a matrix to

the screen; calculating and outputting the maximum element of the matrix to the

screen. Supplement the class with overloaded operations "+", "-". Write a

program that demonstrates working with the class.

26. Create a class of points. The members of the class are the coordinates

of a point on a plane. The methods of the class are: entering a point from the

keyboard; displaying the coordinates of a point on the screen; calculating and

displaying the number of the quadrant of the coordinate system in which the

point is located. Supplement the class with overloaded operations "+" (adding

the corresponding coordinates of two points); "-" (subtracting the corresponding

coordinates of two points). Write a program that demonstrates working with the

class.

27. Create a class of polynomials of dimension 4. The members of the class

 118

are the coefficients of a polynomial. The methods of the class are: entering the

coefficients of a polynomial; displaying the polynomial on the screen;

calculating and displaying the value of a polynomial for a given value x.

Supplement the class with overloaded operations "+" (term-wise addition of

polynomials); "-" (term-wise subtraction of polynomials). Write a program that

demonstrates working with the class.

28. Create a class of triads of numbers. The members of the class are three

real numbers. The methods of the class are: entering three numbers; displaying

numbers on the screen; calculation and output of the largest and smallest

number. Supplement the class with overloaded operations "+" (term-wise

addition of triads of numbers); "-" (term-wise subtraction of triads of numbers).

Write a program that demonstrates working with the class.

29. Create an ellipses class. The members of the class are the lengths of the

semiaxes of the ellipse. The methods of the class are: inputting an ellipse from

the keyboard; outputting the ellipse to the screen; calculating the area and

perimeter of the ellipse and outputting the result to the screen. Supplement the

class with overloaded operations "+" (adding the corresponding semiaxes of the

ellipse); "*" (multiplying the semiaxes of the ellipse by a number). Write a

program that demonstrates working with the class.

30. Create a class of points in space. The members of the class are the

Cartesian coordinates of a point. The methods of the class are: inputting a point

from the keyboard; outputting the coordinates of a point to the screen;

calculating and outputting the polar coordinates of a point. Add the class with

overloaded operations "+" (point coordinates are added); "-" (point coordinates

are subtracted). Write a program that demonstrates working with the class.

 119

№8. Developing programs with custom classes. Inheritance

8.1. The purpose of the work

Learn to work with classes and objects. Acquire object-oriented programming

skills.

8.2. Brief theoretical information

Inheritance

The general form used to declare inheritance is:

class <descendant name> : <access> <ancestor name>

{

<added class fields>;

<declarations or descriptions of added and overridden methods>;

}

The class whose properties are inherited is called the base class, and the

class that inherits the properties of the base class is called the derived class.

Here, access is one of three keywords: public, private, or protected.

Accessing elements of the base class

The access specifier determines how elements of the base class are

inherited by the derived class. If the access specifier of the inherited base class is

public, then all public members of the base class become public in the derived

class. If the access specifier of the inherited base class is private, then all public

members of the base class become private in the derived class. In both cases, all

private members of the base class remain private and inaccessible to the derived

class. If the access specifier is private, then the public members of the base class

become private in the derived class, but these members remain accessible to the

member functions of the derived class.

Sometimes there is a situation when the members of the base class, while

remaining private, were accessible to the derived class. To implement this idea,

C++ introduced the access specifier protected (protected). The access specifier

protected is equivalent to private with the only difference: protected members of

 120

the base class are accessible to members of all derived classes of this base class.

Outside the base class or derived classes, protected members are inaccessible.

The access specifier protected can be anywhere in the class declaration,

although, as a rule, it is placed after the declaration of private members and

before the declaration of public members. The full general form of a class

declaration is as follows:

class class_name

{

... // private members

protected:

... // protected members

public:

... // public members

};

Constructors, Destructors, and Inheritance

A base class, a derived class, or both can have constructors and/or

destructors. If both the base and derived classes have constructors and

destructors, then the constructors are executed in the order of inheritance, and

the destructors are executed in the reverse order. Thus, the base class constructor

is executed before the derived class constructor. For destructors, the reverse

order is correct: the derived class destructor is executed before the base class

destructor.

When considering the concept of inheritance, it is necessary to pay

attention to the peculiarities of passing arguments for the derived and base class

constructors. When initialization is performed only in the derived class, the

arguments are passed in the usual way. However, some difficulties arise when

passing an argument to the base class constructor. First of all, all the necessary

arguments of the base and derived classes are passed to the derived class

constructor. Then, thanks to the extended form of the declaration of the derived

class constructor, the corresponding arguments are passed further to the base

class.

The syntax for passing arguments from a derived class to a base class is as

follows:

 121

derived_class_name (arg_list1) :

base_class_name (arg_list2)

{

... //derived class constructor body

}

It is permissible to use the same arguments for both base and derived

classes. It is also permissible for a derived class to ignore all arguments and pass

them directly to the base class.

In most cases, the base and derived class constructors do not use the same

arguments. Then, if you need to pass one or more parameters to each class

constructor, you should pass all the arguments required by the constructors of

the derived class to the derived class constructor. Then, the derived class

constructor simply passes the arguments it needs to the base constructor.

Multiple Inheritance

There are two ways in which a derived class can inherit more than one base

class. First, a derived class can be used as a base class for another derived class,

creating a multi-level class hierarchy. In this case, the original base class is an

indirect base class for another derived class. Second, a derived class can directly

inherit from more than one base class. In such a situation, the combination of

two or more base classes helps create a derived class.

When a class is used as a base for a derived class, which in turn is a base

for another derived class, the constructors of these three classes are called in the

order of inheritance. Destructors are called in the reverse order.

If a derived class directly inherits multiple base classes, the following

extended declaration is used:

class derived_class_name :

access_spec1 base_class_name1,

access_spec2 base_class_name2,

. . .

access_specN base_class_nameN

{

... // class body

}

 122

When multiple base classes are inherited, the constructors are used from

left to right in the order specified in the derived class declaration. Destructors

are executed in the reverse order. When a class inherits multiple base classes

whose constructors require arguments, the derived class passes those arguments

using the extended form of the derived class constructor declaration:

derived_class_name (arg_list):

base_class_name1(arg_list1),

base_class_name2(arg_list2),

. . .

base_class_nameN(arg_listN)

{

... // derived class constructor body

}

When a derived class inherits a class hierarchy, each derived class must

pass the required arguments to the previous base class in the chain.

Virtual base classes

In the case of multiple direct inheritance by a derived class from the same

base class, a problem may arise. Consider this option:

 Here, the base class D is inherited by the

derived classes B and C. The derived class A

directly inherits these classes. This means

that class D is actually inherited by class A

twice – through classes B and C. However, if

a member of class Base is used in class A,

this will cause ambiguity, as it will have two

copies of class D. To prevent this situation,

C++ includes the virtual base class

mechanism. In this case, the base class

access specifier must be preceded by the

keyword virtual, for example:

class derived2: virtual public base

 123

8.3. Work program

8.3.1. Launch the programming environment

8.3.2. Write a program to solve the problem according to your variant

numbet.

Program requirements

Create a class in accordance with the specified subject area. Provide the

ability to work with an arbitrary number of records, and also implement:

– constructors without parameters and with parameters;

– a function for displaying information about the object on the screen;

– a function for searching for the necessary information by a specific

attribute;

– a function for editing records.

When developing a program, data protection should be implemented

(description with the private modifier) to isolate the data elements of the class

from subroutines in which this class is used.

8.4. Hardware and Software

8.4.1. Personal computer.

8.4.2. Software: IDLE.

8.5 Questions

8.5.1. Explain the OOP principle of inheritance. Give examples.

8.5.2. What access specifiers do you know?

8.5.3. What happens to the public and private members of a base class if

the base class is inherited as public by a derived class?

8.5.4. What happens to the private and public members of a base class if

the base class is inherited as private by a derived class?

8.5.5. Explain why the protected protection category is needed?

8.5.6. What is multiple inheritance?

Task 1

Variant number:

1. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: RECTANGLE

(additionally the lengths of two sides are defined), CIRCLE (additionally the

 124

radius is defined), RIGHT TRIANGLE (additionally the lengths of the legs are

defined).

2. Create a class FUNCTION for calculating the dependence of y on x.

Create derived classes: LINEAR FUNCTION (y(x)=ax+b, two real values are

added - coefficients a and b), QUADRATIC FUNCTION (y(x)=cx2+ax+b, three

real values a, b, c are added), CUBIC FUNCTION (y(x)=dx3+cx2+ax+b, four

real values a, b, c, d are added).

3. Create a base class PROGRESSION with one valid data field - the first

term of the progression. Create derived classes: ARITHMETIC

PROGRESSION and GEOMETRIC PROGRESSION. Each class has an

additional field of type double - a constant difference for arithmetic and a

constant ratio for geometric progression. Define functions for calculating the

sum and the nth element.

4. Create a base class - a geometric QUADRANT, in which the coordinates

of the lower left vertex of the geometric figure are defined, and derived classes -

SQUARE (has an additional field of type double - the length of a side),

RECTANGLE (has two additional fields of type double - the lengths of two

sides), TRAPEZONE (the lengths of four sides are specified).

5. Create a base class FIGURE, in which the coordinates of one of the

vertices of the geometric figure are defined. Create derived classes: CUBE (has

an additional field of type double – edge length), TETRAHEDRON (regular,

has an additional field of type double – edge length), SPHERE (has an

additional field of type double – radius).

6. Create an abstract class CURVES for calculating the dependence of y on

x. Create derived classes: LINE (y(x)=ax+b, two real values are added -

coefficients a and b), PARABOLA (y(x)=ax2+b, real values a, b are added),

HYPERBOLA FUNCTION (y(x)=аx3+ b, real values a, b are added).

7. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: CONE (has

additional fields of type double – base radius and height), CYLINDER (has

additional fields of type double – base radius and height), SPHERE (has

additional field of type double – radius).

8. Create a base class EQUATION for calculating the value of x. Create

derived classes: class LINEAR EQUATIONS (ax+b=0, two real values are

added - coefficients a and b) and class QUADRATIC EQUATIONS

(cx2+ax+b=0, three real values a, b, c are added).

 125

9. Create an abstract class TRIANGLE. A triangle is given by two sides and

the angle between them. Define derived classes RIGHT-ANGLED, ICESCOPE

triangle. Add methods for calculating the area.

10. Create a class geometric SOLID, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes PYRAMID

(has an additional field of type double – height) and SPHERE (has an additional

field of type double – radius). The pyramid class has derived classes

TRIANGULAR (has an additional field of type double – base area) AND

QUADRIGULAR (has a rectangle at the base, has additional fields of type

double – side lengths).

11. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: RECTANGLE

(additionally the lengths of two sides are defined), CIRCLE (additionally the

radius is defined), RIGHT TRIANGLE (additionally the lengths of the legs are

defined).

12. Create a class FUNCTION for calculating the dependence of y on x.

Create derived classes: LINEAR FUNCTION (y(x)=ax+b, two real values are

added - coefficients a and b), QUADRATIC FUNCTION (y(x)=cx2+ax+b, three

real values a, b, c are added), CUBIC FUNCTION (y(x)=dx3+cx2+ax+b, four

real values a, b, c, d are added).

13. Create a base class PROGRESSION with one valid data field - the first

term of the progression. Create derived classes: ARITHMETIC

PROGRESSION and GEOMETRIC PROGRESSION. Each class has an

additional field of type double - a constant difference for arithmetic and a

constant ratio for geometric progression. Define functions for calculating the

sum and the nth element.

14. Create a base class - a geometric QUADRANT, in which the coordinates

of the lower left vertex of the geometric figure are defined, and derived classes -

SQUARE (has an additional field of type double - the length of a side),

RECTANGLE (has two additional fields of type double - the lengths of two

sides), TRAPEZONE (the lengths of four sides are specified).

15. Create a base class FIGURE, in which the coordinates of one of the

vertices of the geometric figure are defined. Create derived classes: CUBE (has

an additional field of type double – edge length), TETRAHEDRON (regular,

has an additional field of type double – edge length), SPHERE (has an

additional field of type double – radius).

 126

16. Create an abstract class CURVES for calculating the dependence of y on

x. Create derived classes: LINE (y(x)=ax+b, two real values are added -

coefficients a and b), PARABOLA (y(x)=ax2+b, real values a, b are added),

HYPERBOLA FUNCTION (y(x)=аx3+ b, real values a, b are added).

17. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: CONE (has

additional fields of type double – base radius and height), CYLINDER (has

additional fields of type double – base radius and height), SPHERE (has

additional field of type double – radius).

18. Create a base class EQUATION for calculating the value of x. Create

derived classes: class LINEAR EQUATIONS (ax+b=0, two real values are

added - coefficients a and b) and class QUADRATIC EQUATIONS

(cx2+ax+b=0, three real values a, b, c are added).

19. Create an abstract class TRIANGLE. A triangle is given by two sides and

the angle between them. Define derived classes RIGHT-ANGLED, ICESCOPE

triangle. Add methods for calculating the area.

20. Create a class geometric SOLID, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes PYRAMID

(has an additional field of type double – height) and SPHERE (has an additional

field of type double – radius). The pyramid class has derived classes

TRIANGULAR (has an additional field of type double – base area) AND

QUADRIGULAR (has a rectangle at the base, has additional fields of type

double – side lengths).

21. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: RECTANGLE

(additionally the lengths of two sides are defined), CIRCLE (additionally the

radius is defined), RIGHT TRIANGLE (additionally the lengths of the legs are

defined).

22. Create a class FUNCTION for calculating the dependence of y on x.

Create derived classes: LINEAR FUNCTION (y(x)=ax+b, two real values are

added - coefficients a and b), QUADRATIC FUNCTION (y(x)=cx2+ax+b, three

real values a, b, c are added), CUBIC FUNCTION (y(x)=dx3+cx2+ax+b, four

real values a, b, c, d are added).

23. Create a base class PROGRESSION with one valid data field - the first

term of the progression. Create derived classes: ARITHMETIC

PROGRESSION and GEOMETRIC PROGRESSION. Each class has an

 127

additional field of type double - a constant difference for arithmetic and a

constant ratio for geometric progression. Define functions for calculating the

sum and the nth element.

24. Create a base class - a geometric QUADRANT, in which the coordinates

of the lower left vertex of the geometric figure are defined, and derived classes -

SQUARE (has an additional field of type double - the length of a side),

RECTANGLE (has two additional fields of type double - the lengths of two

sides), TRAPEZONE (the lengths of four sides are specified).

25. Create a base class FIGURE, in which the coordinates of one of the

vertices of the geometric figure are defined. Create derived classes: CUBE (has

an additional field of type double – edge length), TETRAHEDRON (regular,

has an additional field of type double – edge length), SPHERE (has an

additional field of type double – radius).

26. Create an abstract class CURVES for calculating the dependence of y on

x. Create derived classes: LINE (y(x)=ax+b, two real values are added -

coefficients a and b), PARABOLA (y(x)=ax2+b, real values a, b are added),

HYPERBOLA FUNCTION (y(x)=аx3+ b, real values a, b are added).

27. Create a base class FIGURE, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes: CONE (has

additional fields of type double – base radius and height), CYLINDER (has

additional fields of type double – base radius and height), SPHERE (has

additional field of type double – radius).

28. Create a base class EQUATION for calculating the value of x. Create

derived classes: class LINEAR EQUATIONS (ax+b=0, two real values are

added - coefficients a and b) and class QUADRATIC EQUATIONS

(cx2+ax+b=0, three real values a, b, c are added).

29. Create an abstract class TRIANGLE. A triangle is given by two sides and

the angle between them. Define derived classes RIGHT-ANGLED, ICESCOPE

triangle. Add methods for calculating the area.

30. Create a class geometric SOLID, in which the coordinates of one of the

vertices of a geometric figure are defined. Create derived classes PYRAMID

(has an additional field of type double – height) and SPHERE (has an additional

field of type double – radius). The pyramid class has derived classes

TRIANGULAR (has an additional field of type double – base area) AND

QUADRIGULAR (has a rectangle at the base, has additional fields of type

double – side lengths).

 128

List of recommended literature

1. Programming: Principles and Practice Using C++ is a Book (2nd

Edition) / Bjarne Stroustrup. 2014. 1312 p.

2. С++. Основи програмування. Теорія та практика: підручник /

О. Г. Трофименко, Ю. В. Прокоп, І. Г. Швайко, Л. М. Буката та

ін. ; за ред.О. Г. Трофименко. Одеса : Фенікс, 2010. 544 с.

3. Програмування С++ в прикладах і задачах / Васильєв О. 2024.

382 p.

4. Вступ до програмування мовою С++. Організація обчислень :

навч. посіб. / Ю. А. Бєлов, Т. О. Карнаух, Ю. В. Коваль,

А. Б. Ставровський. К. : Видавничо-поліграфічний центр

"Київський університет", 2012. 175 с.

