relevant results and theoretical developments of science and research

AD ALTA
Journal of Interdisciplinary Research

AD ALTA: Journal of Interdisciplinary Research
Double-Blind Peer-Reviewed
Volume 13, Issue 2, Special Issue XXXVIII., 2023
Number of regular issues per year: 2
© The Authors (November, 2023)

MAGNANIMITAS Assn.
TABLE OF CONTENTS (BY BRANCH GROUPS)

A SOCIAL SCIENCES

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FORMATION AND IMPLEMENTATION OF MECHANISMS OF ELECTRONIC MANAGEMENT OF THE REGIONAL EDUCATION SYSTEM</td>
<td>6</td>
</tr>
<tr>
<td>OLEG BILYK, OKSANA BASHTANNYK, ROMAN PASICHNYI, ANATOLY KALYAYEV, OLENA BOBOVSKA</td>
<td></td>
</tr>
<tr>
<td>INSTITUTIONALIZATION OF INFORMATION POLICY IN THE DIGITAL SPACE OF POST-WAR UKRAINE</td>
<td>16</td>
</tr>
<tr>
<td>TETIANA ZAPOROZHETS, VOLODYMYR HORYN, OKSANA BASHTANNYK, ROMAN PASICHNYI, ANATOLY PUTINTSEV</td>
<td></td>
</tr>
<tr>
<td>COMPETITIVENESS OF HIGHER EDUCATION IN THE PROCESS OF EUROPEAN INTEGRATION OF UKRAINE</td>
<td>24</td>
</tr>
<tr>
<td>IVAN LOPUSHYNSKYI, BOHDAN HRYVNAK, NATALIYA KOVALSKA, VOLODYMYR KUSHNIRIUK, VASYL OSTAPIAK</td>
<td></td>
</tr>
<tr>
<td>PEDAGOGICAL ASPECTS OF “SOFT SKILLS” FORMATION IN FUTURE SOCIAL WORKERS IN THE CONDITIONS OF HIGHER EDUCATION INSTITUTION</td>
<td>32</td>
</tr>
<tr>
<td>LESIA MANDRO, HALYNA MYKHAILYSHYN, IRYNA TARAN, OLEG KOLUBAYEV, ZHANNA ZVARYCHUK</td>
<td></td>
</tr>
<tr>
<td>THE ROLE OF INFORMATION TECHNOLOGIES IN TRAINING OF MODERN HIGHER EDUCATION GRADUATES (IN UKRAINIAN CONTEXT)</td>
<td>37</td>
</tr>
<tr>
<td>OKSANA STADNIK, ALONA STADNYK, TAISIA GAVORONSKA, NATALIYA DIEVOCHKINA, NATALIYA KORZH, YURIY RIMAR</td>
<td></td>
</tr>
<tr>
<td>INNOVATIVE METHODS OF UPBRINGING PROCESS MANAGEMENT IN SECONDARY EDUCATION INSTITUTIONS (IN UKRAINIAN CONTEXT)</td>
<td>42</td>
</tr>
<tr>
<td>NELINA KHAMSKA, OKSANA IVATS, LIUBOV ZADOROZHNA, VOLODYMYR BALTREMUS, TETIANA HURALNYK</td>
<td></td>
</tr>
<tr>
<td>CONCEPTUAL TRANSFORMATIONS OF ETHNODESIGN IN UKRAINE, WITH REGARD TO THE PROCESSES OF GLOBALIZATION AND THE INTRODUCTION OF DIGITAL TECHNOLOGIES</td>
<td>51</td>
</tr>
<tr>
<td>SVITLANA ROHOTCHENKO, ILONA SYVASH, VASYL ODREKHIVSKYI, SVITLANA KIZIM, TETIANA ZUZIAK</td>
<td></td>
</tr>
<tr>
<td>CURRENT TRENDS OF THE JURISDICTIONAL IMMUNITY DEVELOPMENT OF A FOREIGN STATE UNDER THE LAWS OF THE UNITED STATES OF AMERICA</td>
<td>58</td>
</tr>
<tr>
<td>YEVGEN POPKO, VADYM POPKO</td>
<td></td>
</tr>
<tr>
<td>THE LOGOSPHERE OF OPERA AS A POLYSYSTEMIC ARTISTIC PHENOMENON</td>
<td>63</td>
</tr>
<tr>
<td>NATALIA OSTROUKHOVA, WANG ZIYANG, LIU XIAOFANG, DAI TIANXIANG, MIAO WANG</td>
<td></td>
</tr>
<tr>
<td>THE CATEGORY OF THE OPERA IMAGE AS A COMPLEX PHENOMENON</td>
<td>66</td>
</tr>
<tr>
<td>OLEKSANDRA OVSYANNIKOVÀ-TREL, KIRA MAIDENBERG-TODOROVA, NIU QIANHUI, WANG YUPENG, ZHAO YANG</td>
<td></td>
</tr>
<tr>
<td>BASIC PRINCIPLES OF MUSICAL PERFORMANCE LOGIC</td>
<td>70</td>
</tr>
<tr>
<td>OLEKSANDRA SAPSOVICH, TATIANA KAZNACHEIEVA, XU XIAORAN, PANG HAO, QIU XIAOZHEN</td>
<td></td>
</tr>
<tr>
<td>NEUROTECHNOLOGIES AND ARTIFICIAL INTELLIGENCE IN FORMING THE PROFESSIONAL CULTURE OF PEDAGOGICAL FIELD SPECIALISTS</td>
<td>74</td>
</tr>
<tr>
<td>IRYNA BABBASHOVA, NATALIYA BAKHMAT, INNA MARYNCHENKO, MARGARYTA PONOMAROVA, TETIANA HOILINSKA</td>
<td></td>
</tr>
<tr>
<td>THE SYSTEM OF FORMING THE EMOTIONAL AND ETHICAL COMPETENCE OF THE FUTURE EDUCATION MANAGER IN THE CONDITIONS OF TRANSFORMATIONAL CHANGES</td>
<td>82</td>
</tr>
<tr>
<td>IRYNA SHUMILOVA, SERGIY KUBITSKIY, VASIL BAZELIUK, YAROSLAV RUDYK, NATALIJA HRECCHANUK, TETIANA ROZHNNOVA, NATALIJA PRYKHOCHKINA</td>
<td></td>
</tr>
<tr>
<td>THE FORMATION OF PROFESSIONAL COMPETENCIES OF A HIGHER EDUCATION INSTITUTION GRADUATE IN THE CONDITIONS OF THE UNIVERSITY 3.0 PARADIGM FORMATION</td>
<td>90</td>
</tr>
<tr>
<td>OLHA MORENKO, OLENA POZDNIAKOVA, IRYNA VORONIUK, VIKTORIA SCHUROVA, TETIANA CHUMAK</td>
<td></td>
</tr>
<tr>
<td>PROFESSIONAL COMMUNICATION AS A MANIFESTATION OF THE PUNCTUATION CULTURE OF MEDIA WORKERS</td>
<td>97</td>
</tr>
<tr>
<td>NATALIJA SHULSKA, OLFA NOVIKOVA, YURI HRYTSYEVYCH, MARIIA LICHUK, GALYNA VYSHNEVSKA, OLHA HAIDA, SERHII TARASENKO, ANDRIII YAVORSKYI</td>
<td></td>
</tr>
<tr>
<td>PRESERVATION AND DEVELOPMENT OF UKRAINIAN CHOREOGRAPHIC AND MUSIC FOLKLORE: CONNECTION BETWEEN TRADITION AND MODERNITY</td>
<td>105</td>
</tr>
<tr>
<td>OLGA KVETSKO, SVITLANA VASIRUK, NATALIJA MARUSYK, OKSANA FEDORKIV, VIKTORIA SHUMILOVA</td>
<td></td>
</tr>
<tr>
<td>THEORETICAL BACKGROUND OF THE SYSTEM FOR ADVANCED QUALIFICATIONS OF CIVIL SAFETY SPECIALISTS IN HUMAN CAPITAL MANAGEMENT (UKRAINIAN CONTEXT)</td>
<td>110</td>
</tr>
<tr>
<td>VIKTOR MYKHAILOV, VALENTYNA RADKEYCH, OKSANA PAVLOVA, NELIA KINAKH, OLEKSANDR RADKEYCH, IGOR RADOMSKYI, MYKOLA PRYHODIY, SERHII PAVLOV, IRYNA DROZICH, YEVELINA TSAROVA</td>
<td></td>
</tr>
</tbody>
</table>
MODERN CONCEPTS OF BAROQUE MUSIC ANALYSIS IN FOREIGN MUSICOLOGY (ON THE EXAMPLE OF ANTONIO VIVALDI’S RV 396 CONCERTO)
VICTORIJA BODINA-DIACHOK, VERONIKA PIESHKOVA, TETIANA DUHINA, OLENA MARTSENKIVSKA, LILIJA MUDRETSKA, OLHA VASYLENKO, IRENE OKNER

PHILOSOPHICAL AND METHODOLOGICAL PRINCIPLES OF TEACHING JAPANESE LANGUAGE TO PHILOLOGY STUDENTS IN UKRAINIAN HIGHER EDUCATION INSTITUTIONS
VOLODYMIR BUGROV, OKSANA ASADCHYKH

DESIGN THINKING IN THE VISUALIZATION OF ECONOMIC DEVELOPMENT PROJECTS IN THE AGRARIAN SPHERE: SCIENCE AND ART
OLEKSANDR HARNIHA, OLEKSANDR LESNIAK, HLIB VYSHESLAVSKYI

CHAMBER CANTATA IN THE WORK OF JEAN-PHILIPPE RAMEAU (THE STAGE OF THE FORMATION OF THE COMPOSER)
VIRA ARTEMIEVA, OLEG BEZBORODKO, TYMUR IVANNIKOV, IRYNA KOKHANYK, VALENTINA REDYA

FINANCIAL SUPPORT OF LOGISTICS: SECURITY ASPECTS AND SUSTAINABLE DEVELOPMENT (IN UKRAINIAN CONTEXT)
NATALIJA ANTONIUK, KATERIYA MELNYKOVA, YULIJA KOHODIINA, IGOR BRITCHENKO, NATALIJA KHOMIUK, SVITLANAROGACH, TETIANA SHMATKOVSKA

THE DYNAMICS OF SPEECH: FROM THE PROCESS TO PEDAGOGICAL CULTURE
NADIR MAMMAADI

EXPLICIT INFORMATION: DEFINITION, ROLE, AND APPLICATIONS IN THE MODERN WORLD
NIGAR SEYIDOVA

DIALOGUE IN CRITICAL-REALIST LITERATURE: CHARACTEROLOGICAL ROLE AND ARTISTIC-STRUCTURAL SIGNIFICANCE
RAMIZ GASIMOV

B PHYSICS AND MATHEMATICS

RESEARCH OF PARAMETERS OF SECURITY ROOMS’ ENCLOSURE STRUCTURES IN RESIDENTIAL APARTMENT BUILDINGS
VADYM NIZHYNK, VIKTOR MYKHAILOV, OLEKSANDR NIKULIN, SERGI TSIVIRKUN, OLESIJA KOSTYRKA, VALENTYN MELNYK, ANDRIY BEREZOVSKYI, NELIA VOVK, OLEKSANDR ZEMJANSKYI, ALINA PEREHIN
A SOCIAL SCIENCES

AA PHILOSOPHY AND RELIGION
AB HISTORY
AC ARCHAEOLOGY, ANTHROPOLOGY, ETHNOLOGY
AD POLITICAL SCIENCES
AE MANAGEMENT, ADMINISTRATION AND CLERICAL WORK
AF DOCUMENTATION, LIBRARIANSHIP, WORK WITH INFORMATION
AG LEGAL SCIENCES
AH ECONOMICS
AI LINGUISTICS
AJ LITERATURE, MASS MEDIA, AUDIO-VISUAL ACTIVITIES
AK SPORT AND LEISURE TIME ACTIVITIES
AL ART, ARCHITECTURE, CULTURAL HERITAGE
AM PEDAGOGY AND EDUCATION
AN PSYCHOLOGY
AO SOCIOLOGY, DEMOGRAPHY
AP MUNICIPAL, REGIONAL AND TRANSPORTATION PLANNING
AQ SAFETY AND HEALTH PROTECTION, SAFETY IN OPERATING MACHINERY
DESIGN THINKING IN THE VISUALIZATION OF ECONOMIC DEVELOPMENT PROJECTS IN THE AGRARIAN SPHERE: SCIENCE AND ART

OLEKSANDR HARNAHA, OLEKSANDR LESNIAK, HLIB VYSHESLAVSKYI

Abstract: The article represents an attempt to comprehend the possibilities of applying general methodological principles of design thinking in the process of planning and developing innovative economic development projects in the agricultural sector. The relations of design and visualization as the science and art processes in the economy are outlined. It is noted that smart agriculture uses advanced technologies such as sensors, devices, machines and information technology, robots, GIS technologies, which will allow farms to become more profitable, efficient, safe, and environmentally friendly. The authors claim that the goal of digitalization of agriculture is to achieve a significant increase in the efficiency and sustainability of its functioning through fundamental changes in the quality of management of both technological processes and decision-making processes at all levels of the hierarchy, based on modern production methods, and the further use of information about the state of controlled elements and subsystems, as well as states of the economic environment of agriculture. Based on a study of the use of visualization technologies within the framework of the philosophy of design thinking, it is shown that the introduction of digital technologies in the agro-industrial complex will dramatically increase labor productivity and reduce risks of innovation processes in the agricultural sector. At the same time, it is necessary to take into account significant risks of innovation processes in the agricultural sector, where innovative activity is considered as a complex system characteristic capable of adapting to the changing influences of external and internal environmental factors, which is a constant and continuous process of transforming technical or technological ideas based on scientific developments into new technologies. In the prospect, these technologies should be used directly in production in order to obtain qualitatively new products and achieve economic, socially beneficial, and environmental effects.

Keywords: agrarian sector; design thinking; theory and history of arts; economic process digitalization; innovative projects; visualization.

1 Introduction

The current stage of development of productive forces and production relations initiates the need for their qualitative transformation within the framework of the emerging model of innovative development of the country. This is reflected in the agricultural sector of the economy, where innovative activity becomes the dominant direction.

Meanwhile, low profitability of production and high risks of introducing innovations have made the agricultural sector of the economy unattractive for private investors, while local government support for investment processes does not make it possible to determine a system of strategic priorities for innovative entities in the agro-industrial complex. This proves the relevance and timeliness of scientific developments in the proposed direction.

Generalization and systematization of existing definitions of innovative activities of organizations in the agricultural sector make it possible to clarify the interpretation of this phenomenon. Leading experts believe that the investment process should be considered as a complex system characteristic capable of adapting to the changing influences of external and internal environmental factors, which is a constant and continuous process of transforming technical or technological ideas based on scientific developments into new technologies. In the prospect, these technologies should be used directly in production in order to obtain qualitatively new products and achieve economic, socially beneficial, and environmental effects.

It should also be taken into account that the complexity of agricultural production is the main factor when choosing methods for managing the innovation process, since, along with industrial means of production, biological organisms take an active part in the production process. Their development is determined by the action of natural laws and depends on factors such as climate, weather, heat, moisture, light, soil structure, etc. Such features predetermine the complexity and high level of risks of innovation processes in the agricultural sector. At the same time, it is necessary to take into account significant specifics in the assessment of innovative activity. Thus, the use of land as the main means of production requires the application of a dual approach to assessing innovation. Obtaining an economic effect, firstly, must be combined with replenishing soil fertility and preserving the environment and, secondly, the products of the complex must meet modern sanitary and environmental requirements. This gives grounds to define innovation, in relation to the agro-industrial complex, as a systematic process of using technical, technological, organizational, economic, social, and environmental innovations that ensure enhanced agro-industrial potential and increased socio-economic efficiency while maintaining and improving soil fertility and product quality.

A critical factor in the development of the agricultural sector today is digital transformation. Under the influence of digital transformation, agribusiness is changing quite quickly, while traditional boundaries and industry segments are blurring. Signs of the next revolution are already visible: robots and unmanned vehicles that are being developed specifically for agriculture, mechanized weed removal and fertilization or fruit picking. Robotic farming is now gaining momentum around the world, although just a few decades ago it seemed like a dim prospect. Precision agriculture is now based on soil maps, the use of satellites and drones, and information obtained through the Internet of Things. Drones, thanks to the advent of lightweight and powerful hyperspectral cameras, have made it possible to calculate the biomass and nutrient supply of plants, creating the basis for the development of more complex and accurate recommendations. Moreover, models based on decision trees that have been developed to date have made it possible to distinguish plant diseases based on visual information. “Virtual fence” technologies allow livestock to be grazed remotely using remote monitoring using sensors installed on the animals’ bodies [14]. For example, in Germany, the use of precision agriculture and smart farm systems has been practiced for almost two decades. Continuous improvement of hardware and software makes it possible to significantly improve the agricultural process, for example, for the optimal organization of the supply chain, from production to the flow of products to consumers [13].

Smart farming, as noted by Swiss scientists, reduces the harmful impact of agriculture on the environment through minimized or precise application of fertilizers and pesticides [10]. With modern ICT, near-constant monitoring of a farm using a network of sensors is entirely possible. Theoretical problems and practical issues of integrating information about the state of plants, animals, and soils with the needs for resources such as water and fertilizers have also been solved. Such goals are quite achievable even on a global scale.

The latest technologies make it possible to increase the volume of products produced, while using fewer resources and allocated space. Agriculture could soon become more precise, sustainable, and environmentally friendly. Combined together, these technologies have brought about revolutionary changes in agriculture in both more and less developed countries.

Digital technologies provide new opportunities for farm diversification. Like the “smart cities” that have been the subject of discussion and concept development, ICT capabilities are likely to lead not to a globally standardized and quickly adopted business system, but to a diversity of business systems. Management consulting will facilitate the contribution of technical innovation to diversification if it is reliable and transparent, even if farmers have no experience in growing a particular crop.

However, although the Internet of Things, applied to farm machines, animals, fields, plants, and trees, can be used to manage routine situations in agriculture, the farmer still has to be a researcher while keeping an eye out for an abnormal situation to arise. In addition, as in other sectors of the economy,
competition is intensifying due to the development and implementation of the latest breakthrough technologies, in particular quantum technologies. In turn, there is an urgent need to apply the fundamentals of design thinking in projects in the agricultural sector.

Design thinking methodology has a creative component and borrows the work process of designers. David Kelly identified several basic principles of design thinking: idea generation, a team with diverse professional experience, maximum empathy towards consumers, and rapid prototyping using available tools [2]. Today, design thinking is actively used in the innovative activities of companies; the approach allows identifying the hidden needs of potential clients, understanding a person, his motives and values. Namely this feature of design thinking allows the team to focus its attention on the end consumer and, in the process of innovation, create a clearly valuable offer. One of the important areas of application of design thinking in the agricultural sector is the visualization of economic development projects. Design thinking allows the team to focus its attention on the end consumer and, in the process of innovation, create a clearly valuable offer. One of the important areas of application of design thinking in the agricultural sector is the visualization of economic development projects.

Thus, design is not a simple field of activity. On the contrary, the designer's intuition and problem-solving methods, aimed at meeting people's needs in a commercially viable and technologically feasible way. In other words, design thinking is nothing more than innovation, the center of which is the person and his needs [10]. The words “design” and “innovation” are now becoming synonymous, and design thinking is characterized as a methodology for creating these innovations.

Design thinking takes advantage of the capabilities that exist in every person, but are not taken into account in standard problem-solving methods. Design thinking is human in its essence and is based on a person’s ability to intuitively feel, to create ideas that carry not only a functional, but also an emotional component, to express oneself not only in words or symbols [1]. This is not about managing a project based on feelings, intuition, and inspiration, but about the need to move away from over-reliance on rationalism and an analytical approach [23].

The process of solving a problem from the point of view of design thinking consists of a number of successive stages, each of which requires compliance with the above principles. The Stanford School identifies five main stages - "Understanding", "Focus", "Idea", "Prototype", "Testing". In a number of studies, a larger number of stages is found only due to the fact that individual steps are divided into smaller, narrower tasks [24]. In general, the design thinking method consists of six key stages:

Stage 1 – empathy. The concept, which comes from psychology, is borrowed and effectively implemented into the mechanism of design thinking. It means the ability to hear and understand what exactly the client is saying, what wishes he expresses for the final product. But it is even more important to hear what the client did not say and, perhaps, did not realize himself, but at the same time what is really important and desirable for him. Empathy is associated with the ability to ‘put oneself in the consumer’s shoes’.

Stage 2 – focusing. This is a transitional stage at which the received information is processed in order to eliminate everything unnecessary and secondary. At this stage, the client’s problems should be formulated, which will subsequently become
tasks. Focusing allows getting an explicit expression of the problem that needs to be solved based on the collected information about the needs of the person. The point of focusing is to formulate a question; the question should be related to the problem. In this case, the question should be formulated as specifically as possible, not about the problem as a whole, but about the problem of a specific person.

Stage 3 – generation of ideas. At this stage, there is a transition from defining the problem to creating a solution for the user. It is very important that this solution is truly created for a specific client, consumer, and not tailored to a standard option. Non-standard and individuality are the main postulates of this stage. To generate ideas, the creation of a prototype or layout, as well as bodystorming, is used. In the latter, the idea is to imagine what it would be like if the product existed and act as if it ideally existed in the place where it will be used.

Stage 4 – choosing an idea. To select an idea that best suits the needs of the consumer, it is necessary to develop selection criteria. Then, from a variety of possible scenarios, the ideal one is selected, which best meets the requirements and satisfies the selected criteria.

Stage 5 – prototyping. A prototype may look like a simple drawing, or a fully thought-out concept represented using a template, or a spreadsheet [15]. The prototype has several purposes. It is necessary as a tool for communication with the client, interaction for the purpose of the most fruitful and effective interaction. With the help of a prototype, it becomes possible to test a finished product or service, which will maximize the satisfaction of the customer’s wishes. The prototype allows managing the solution development process and identifies changeable conditions.

Stage 6 – testing. Testing is about getting feedback on prototypes. Testing can take place in two scenarios. In one, the customer tests the prototype independently, while in the second, testing is carried out jointly with the contractor. Testing is aimed at solving several problems: improving the prototype, identifying its shortcomings, identifying unsolved problems and developing new solutions. Testing eliminates possible misunderstandings between the customer and the contractor. If to ignore this stage, then most likely the needs of the interested parties will not be fully satisfied and all previous work will be in vain, and therefore, the costs associated with it will not be covered by income [8; 24].

Since agriculture is dynamic, it exhibits both positive and antagonistic interactions due to the presence of contradictions in any sphere of human activity. Firstly, all objects in the agricultural economy are interconnected, secondly, they interact with each other; thirdly, interaction is a process of mutual influence, high communication and mutual relations between them. Agriculture is a production system whose purpose is to produce food products for consumption and raw materials for processing industries. This means that economic processes in agriculture are not the result of the interaction of two or more objects. The system determines the presence of many interconnected opposing elements that are in constant, enduring contradiction. Design thinking can help resolve contradictions and harmonize all elements.

As noted above, the goal of digitalization of agriculture is to achieve a significant increase in the efficiency and sustainability of its functioning through fundamental changes in the quality of management of both technological processes and decision-making processes at all levels of the hierarchy, based on modern production methods and the further use of information about the state of controlled elements and subsystems, as well as the state of the economic environment of agriculture.

Among the key basic areas of innovation, the following should be noted [19-21]:

1. “Smart” field - ensuring stable growth in the production of agricultural crop products through the introduction of digital technologies for collecting, processing, and using an array of data on the state of soils, plants, and the environment.
2. “Smart” garden - at least 90% of the area of perennial plantings in the form of a unified geographic information system; at least 40% of the area of industrial gardens must be provided with means of collecting data on the state of soils, plants, and the environment; at least 50% of the area of industrial gardens must be covered by a data transmission network to ensure the collection of Big Data; at least 60% of mobile technical equipment will be equipped with monitoring systems and included in a unified geographic information system; at least 30% of technical equipment will be robotic.
3. “Smart” greenhouse - development of modern integrated technology for “smart” greenhouses, based on the use of the Internet of Things for food production; ensuring stable growth in crop production in protected soil; obtaining highly competitive substrates and fertilizers; domestic innovative systems (microclimate, lighting, efficient energy supply, universal module, power supply, autonomy, etc.) for closed ground; methods of product quality control, increasing the nutritional value of vegetables.
4. “Smart” farm - the creation of digital technologies that ensure the independence and competitiveness of the livestock complex; creation and implementation of technologies to increase milk productivity of animals up to 13,000 l/year; reducing the incidence of mastitis in cows and, consequently, reducing the cost of antibiotics; creation and implementation of technologies for autonomous production (without an operator), energy efficiency and energy mobility in a “smart farm”; creation of safe and high-quality, including functional, food products.

The development of the modern agricultural sector occurs in several directions simultaneously, with the main focus being on the introduction of new technologies in agriculture. The use of best practices helps improve agricultural sustainability through smarter and more informed management decisions.

In addition, modern agricultural technologies to increase yields optimize the profitability of agricultural enterprises. Farmers successfully combine time-tested and new farming methods. For example, the sequence of crops in a crop rotation can be effectively planned using digital agriculture technologies to monitor field productivity based on satellite imagery.

It is necessary to develop the following end-to-end technologies: Internet of Things; RFID technologies; neural networks; big data; artificial intelligence; new production technologies; sensors and robotics components; Blockchain technologies; contactless and remote technologies [4; 7].

New technologies in the agricultural sector (agritech) cover a wide range of industries and technical means aimed at increasing the productivity of agricultural enterprises. Of course, the development of such technological solutions requires visualization.

The introduction of new smart farming methods based on projects that involve visualization within the framework of design thinking, taking into account all systemic connections and influencing factors, benefits all participants in the agri-food chain. The use of the latest technologies in agriculture to optimize and automate agricultural operations and field work can significantly save time and resources. Let us name the main advantages of using new agricultural technologies:

- Using irrigation water, fertilizers, pesticides, and other resources in smaller quantities allows agricultural producers to reduce costs and retain more of their profits;
- Reducing the volume of chemical runoff from fields and preventing pollution of water bodies mitigates the negative impact of farming on the environment and helps to increase the sustainability of agriculture;
- Increased productivity with reduced labor costs;
Simplification of interaction between participants in the agricultural process and coordination of their actions using mobile devices, new specialized applications or web resources;

Facilitating access to agricultural insurance and financial services, as well as market and technological data;

Minimization of losses due to the invasion of field pests, natural disasters and unfavorable weather conditions in the fields using permanent agricultural monitoring systems at reasonable prices;

Increased income of agricultural enterprises due to improved quality of agricultural products and strengthened quality control;

Timely detection of nutrient deficiencies in plants and informing agricultural producers about the type and quantity of fertilizers and other agrochemicals needed to treat crops and increase their yield;

Ability to predict potential problems in the field through new capabilities to visualize production patterns and laws resulting from the application of new methods for analyzing current and historical field data.

Agriculture 4.0 is born in the era of widespread automation and the use of digital technologies. The development of new agricultural technologies is becoming more integrated and networked, which makes it possible to optimize all stages of the production process and improve the processes of monitoring, control, and business management [19].

During the production process, farmers face a number of problems such as pest attacks and plant diseases. The weather factor in agriculture should also be taken into account: meteorological anomalies can cause serious damage to the crop. However, new digital technologies make it possible to minimize negative consequences. At the same time, with the help of new technologies, farmers can control those agricultural aspects that directly depend on them, and as a result, increase their profits. In particular, digital technologies in agriculture help to obtain a reasonable answer to the following questions [5; 10]:

- What types of crops to grow;
- How to optimally alternate crops in crop rotation;
- How often and in what volume to use water for precision irrigation;
- When to apply fertilizers and plant protection products, which one and how much;
- Which treatment is best suited for a given soil type.

The competitive advantages of agricultural enterprises are ensured by the use of modern software, remote sensing technologies (especially high-resolution satellite images), proximal sensors, new means of communication, and risk forecasting algorithms based on accurate data.

For example, one of the useful developments is CROP-monitoring, a high-tech agricultural tool that provides reliable analytics of field conditions for farmers, agricultural traders, and insurers.

In particular, EOSDA Crop Monitoring offers many useful features, such as graphs of precipitation and weather conditions. The user can analyze the values of accumulated precipitation and determine the level of humidity in a specific field. In this way, he makes reliable decisions regarding the need for irrigation and adjusts the timing of field work depending on meteorological phenomena. This allows avoiding excessive or, conversely, insufficient irrigation.

Visualization is one of the foundations of Crop Monitoring. For example, the Red Edge Chlorophyll Index shows areas of soybean field that need fertilizer (see Figure 1).

Figure 1. Chlorophyll Red Edge index, visualization (CROP Monitoring)

The normalized difference RedE indicates the photosynthetic activity occurring in the canopy and the estimated nitrogen concentration in the soybean plants in the selected field (see Figure 2).

Figure 2. Normalized RedE difference indicating photosynthetic activity CROP Monitoring

Satellite photography can considerably improve variable rate seeding. The utilization of remote sensing data from the EOSDA Crop Monitoring satellite-based precision agriculture platform is one example. The scientists focused on vegetation and soil indices from several spectral bands. They were able to pinpoint areas of interest where agricultural tactics for precision planting variable rates should be readjusted due to drastic variations in those values (see Figure 3).

Figure 3. 3D visualization of the field with a digital elevation model, its derivatives, and a prediction map of the soil cover

General sample of visualization of agri-data tools for big data analytics is presented in Figure 4.

Figure 4. Visualization of agri-data based on big data analytics
Internet coverage, standard interception, interference, propagation losses, communication range, wireless connection quality, network growth, network management, communication protocols, latency, and throughput are the most frequent Ag-IoT network layer challenges. Because most farms are in rural areas, isolated locales, or mountain regions, getting internet connectivity to them is a big difficulty because these underpopulated areas have little internet infrastructure. Creating a local network, akin to a hybrid cloud, could be one approach. This system does not connect to the internet, but it does allow local servers to provide rudimentary IoT capabilities [3]. Because of recent advancements in low earth orbit (LEO) satellites, commercial internet connectivity via satellite, as shown in Figure 5, would be available shortly. In fact, Figure 4 is a ‘classic’ example of the use of design thinking in the visualization of economic development projects in the agricultural sector.

Moreover, VR and AR have emerged as transformative tools for stakeholder engagement, surpassing traditional communication methods and now are actively used for visualization of innovative projects in agriculture sector, enabling addressing the interests of all stakeholders and participants in frames of design thinking [9].

Plant Vision (formerly known as Huxley) is one such example. This crop management system entirely digitizes plant farming by utilizing artificial intelligence, machine learning, and augmented reality. To collect data, RGB and infrared cameras and sensors are being deployed in a facility. Crops are photographed every minute, and the AI scans the images to determine their health. A farmer can utilize wearables such as Google Glass to acquire augmented reality information such as temperature and plant health.

Irrigation, application of fertilizers, pesticides, and other agricultural inputs at large agricultural enterprises no longer occurs “by eye” or in equal quantities throughout the entire field. Thanks to new technologies in agriculture, agronomists can apply only what is required on a particular site, and also carefully select the right treatment for each crop.

It must be taken into account that AR/VR technologies are a tool, and the creation of cases and understanding of effectiveness is based on tasks and needs, which is determined when applying design thinking. In particular, AR/VR technologies are used to increase the investment attractiveness of agribusiness and to present agricultural enterprises to potential investors. In particular, in Ukraine, a unique comprehensive virtual tour was created for APK-Invest, one of the largest agro-industrial complexes in the country (it covers a significant territory of the Dnipropetrovsk region, almost 30 thousand sq. m.). As part of the project, digital platform company 3D TOUR created aerial panoramas, ground-based 3D panoramas, video inserts, and a corporate-style web interface for the presentation of the tour.

Despite the apparent external stability of the structure of the regional agricultural sector, it is in constant movement and development both in time (from the moment of sowing seeds to harvesting agricultural crops; from the birth of the offspring of farm animals to their rearing and fattening) and in space (movement of products agriculture within the territorial boundaries of the region and beyond).

Having defined time, space and movement as the main characteristics of the existence of processes and phenomena in the agricultural economy, as well as taking into account the presence of the unity of their three entities - the external environment, the object and the boundaries between them, we predetermined the need to study these categories from the point of view of the repeatability of economic processes, as well as objective the existence of opposites and contradictions in them. However, one should recognize the existence of the factor of chance as a reflection of external, insignificant, unstable, single connections of reality, the result of the intersection of independent causes and events. At the same time, there are several different options for turning possibility into reality, but only one is implemented. The effect of randomness has a destructive impact on cyclical processes in agriculture - these are natural and man-made risk factors, as well as economic factors (for example, the recent EU embargo on grain imports from Ukraine).

Therefore, the goal of the designing and development of innovative projects and digital platforms of the agro-industrial complex is to radically increase the efficiency of agricultural and agro-industrial enterprises through the widespread introduction into production processes of new digital, including end-to-end, technologies and innovative business models for market interaction of these enterprises based on the model “platform as a service”, which involves complex visualization and the mandatory application of design thinking principles.

In each area of the agro-industrial complex, there are several markets, each of which can be equipped with its own digital platform. For convenience, if a certain market is part of another, larger market, then the digital platform supporting it will be called a subplatform in relation to the platform of the larger market. Each of these subplatforms may have its own subplatform. For example, a crop subplatform may contain grain subplatforms, which in turn may contain wheat subplatforms, corn subplatforms, etc.

Application modules (API) can be programmatically attached to each subplatform, which solve specific problems of the subplatform participants. In addition, sections of subplatforms may use the end-to-end technologies described above.

Thus, design thinking, including in agrarian sector, is actually a human-centered approach. This approach is capable of revealing new perspectives through interdisciplinarity, embodying the most original ideas, satisfying the most demanding stakeholders and leading to innovative solutions in the agricultural sector. Design paradigm helps in visualization of both production and economic processes in agrarian sphere, with AR and VR as the convergence of science and art. Combining data, design and artificial intelligence will create new breakthroughs in digital experiences.

Literature:

Primary Paper Section: A

Secondary Paper Section: AE, AH